L–T Separations in Deep Exclusive Meson Production with JLab 22 GeV

Garth Huber

University of Regina

Hall A/C Summer Workshop July 16, 2024

DEMP Opportunities in Hall C

 $F_{\pi}(Q^2)$

 $G_{\pi NN}(t)$

- 1) Determine the Pion Form Factor to high Q^2 :
- via p(e,e' π^+)n $|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$
- The pion form factor is a key QCD observable
- Extension of studies to Kaon Form Factor expected to reveal insights on hadronic mass generation via DCSB
- 2) Study the Hard-Soft Factorization Regime:
- Need to determine region of validity of hardexclusive reaction meachanism, as GPDs can only be extracted where factorization applies
- Separated $p(e,e'\pi^+/K^+)$ cross sections vs. Q^2 at fixed x to investigate reaction mechanism towards 3D imaging studies
- Extension of studies to u–channel p(e,e'p)ω can reveal hard-soft factorization at backward angle

Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions ($k < k_0$) and a hard tail φ_{π}^{hard} . While φ_{π}^{hard} can be treated in pQCD, φ_{π}^{soft} cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

A program of study unique to Hall C (until completion of EIC)

У

(1-y)

At large Q^2 , perturbative QCD (pQCD) can be used

$$F_{\pi}(Q^2) = \frac{4\pi C_F \alpha_S(Q^2)}{Q^2} \left| \sum_{n=0}^{\infty} a_n \left(\log \left(\frac{Q^2}{\Lambda^2} \right) \right)^{-\gamma_n} \right|^2 \left[1 + O\left(\alpha_S(Q^2), \frac{m}{Q} \right) \right]$$

Х

(1-x)

where f_{π} =92.4 MeV is the

 $\pi^+ \rightarrow \mu^+ \nu$ decay constant.

at asymptotically high Q^2 , only the hardest portion of the wave function remains

$$\phi_{\pi}(x) \xrightarrow{Q^2 \to \infty} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$F_{\pi}(Q^2) \xrightarrow[Q^2 \to \infty]{} \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359

This prediction only relies on asymptotic freedom in QCD, *i.e.* $(\partial \alpha_s / \partial \mu) < 0$ as $\mu \rightarrow \infty$

Pion Form Factor at Finite Q²

- huberg@uregina.ca **Garth Huber**,
- At finite momentum transfer, higher order terms contribute.
 - Calculation of higher order, "hard" (short distance) processes difficult, but tractable.

 $Q^2 F_{\pi}$ should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 . \rightarrow Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]

Contrasts in Hadron Mass Budgets

Stark Differences between proton, K⁺, π^+ mass budgets

- Due to Emergent Hadronic Mass (EHM), Proton mass large in absence of quark couplings to Higgs boson (chiral limit).
- Conversely, and yet still due to EHM and DCSB, K and π are massless in chiral limit (i.e. they are Goldstone bosons of QCD).
- The mass budgets of these crucially important particles demand interpretation.
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K.

6

Synergy: Emergent Mass and π^+ Form Factor

8

6

 Q^2 / GeV²

10

At empirically accessible energy scales, π^+ form factor is sensitive to emergent mass scale in QCD

- Two dressed-quark mass functions distinguished by amount of DCSB
 DCSB emergent mass generation is 20% stronger in system characterized by solid green curve, which is more
 - realistic case $F_{\pi}(Q^2)$ obtained with these mass functions
 - r_{π} =0.66 fm with solid green curve
 - r_{π} =0.73 fm with solid dashed blue curve
 - $F_{\pi}(Q^2)$ predictions from QCD hard scattering formula, obtained with related, computed pion PDAs
 - QCD hard scattering formula, using conformal limit of pion's twist–2 PDA $\phi_{\pi}^{cl}(x) = 6x(1-x)$

2

0

7

The Charged Kaon – a 2nd QCD test case

In the hard scattering limit, pQCD predicts that the π⁺ and K⁺ form factors will behave similarly

$$\frac{F_K(Q^2)}{F_\pi(Q^2)} \xrightarrow{Q^2 \to \infty} \frac{f_K^2}{f_\pi^2}$$

 It is important to compare the magnitudes and Q²-dependences of both form factors. huberg@uregina.ca

Huber,

Garth

Measurement of π^+ Form Factor – Larger Q^2

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$\left| p \right\rangle = \left| p \right\rangle_{0} + \left| n \pi^{+} \right\rangle + \dots$$

- At small –*t*, the pion pole process dominates the longitudinal cross section, σ_{L}
- In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique 1.Isolating σ_L experimentally challenging 2.Theoretical uncertainty in form factor extraction.

- **L**-T separation required to separate σ_L from σ_T
- Need to take data at smallest available –*t*, so σ_L has maximum contribution from the π^+ pole
- Need to measure *t*-dependence of σ_L at fixed Q²,W

Experimental Issues

- Deep Exclusive Meson Production (DEMP) cross section is small, can exclusive p(e,e'π⁺)n and p(e,e'K⁺)Λ channels be cleanly identified?
 - High momentum, forward angle (5.5°) meson detection is required, with good Particle ID to separate π^+ , K^+ , p
 - Good momentum resolution required to reconstruct crucial kinematics, such as M_{miss}, Q², W, t
 - Need to measure the longitudinal cross section $d\sigma_L/dt$ needed for form factor extraction

Hall C of Jefferson Lab has been optimized for specifically such studies

Hall C during Data Taking

π^+/K^+ FF experiments have challenging forward angle requirements

Prompt

SHMS+HMS

coincidences

10

1.05

 $e+p \rightarrow e'+\pi^++n$

20 30e π Coin Time (ns)

1.1 MM_π (GeV/c^2)

 2π threshold

Coincidence measurement between charged pions in SHMS and electrons in HMS

Electron-Pion CTime Distribution Easy to isolate $\times 10^3$ Events 160 exclusive channel Accidental 140 coincidences 120 Excellent particle 100 80 identification 60 40 CW beam minimizes 20 "accidental" coincidences -20 Missing Mass Distribution Missing mass resolution 14000 Events easily excludes 2-pion 12000 10000 contributions 8000 6000 PionLT experiment E12–19–006 Data 4000 Q²=1.60, *W*=3.08, *x*= 0.157, ε=0.685 2000 E_{beam}=9.177 GeV, P_{SHMS}=+5.422 GeV/c, θ_{SHMS}= 10.26° (left) 0.9 0.95 Plots by Muhammad Junaid

L/T–separation error propagation

Error in $d\sigma_L/dt$ is magnified by $1/\Delta\epsilon$, where $\Delta\epsilon = (\epsilon_{Hi} - \epsilon_{Low})$ \rightarrow To keep magnification factor <5x, need $\Delta\epsilon$ >0.2, preferably more!

$$\frac{d^{2}\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} + \sqrt{2\,\varepsilon\,(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi_{\pi} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi_{\pi}$$
$$\frac{\Delta\sigma_{L}}{\sigma_{L}} = \frac{1}{(\varepsilon_{1} - \varepsilon_{2})} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{(R + \varepsilon_{1})^{2} + (R + \varepsilon_{2})^{2}} \qquad \text{where } R = \frac{\sigma_{T}}{\sigma_{L}}$$
$$\frac{\Delta\sigma_{T}}{\sigma_{T}} = \frac{1}{(\varepsilon_{1} - \varepsilon_{2})} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\varepsilon_{1}^{2} \left(1 + \frac{\varepsilon_{2}}{R}\right)^{2} + \varepsilon_{2}^{2} \left(1 + \frac{\varepsilon_{1}}{R}\right)^{2}}$$

The relevant quantities for F_{π} extraction are R and $\Delta \varepsilon$

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Extract $F_{\pi}(Q^2)$ from JLab σ_L data

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

• Feynman propagator $\left(\frac{1}{t - m_{\pi}^{2}}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Free parameters: Λ_π, Λ_ρ (trajectory cutoff).

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

• At small –*t*, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2, \Lambda_{\rho}^2 = 1.7 \text{ GeV}^2.$

Current and Projected F_{π} Data

SHMS+HMS will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

The pion form factor is the clearest test case for studies of QCD's transition from nonperturbative to perturbative regions.

The ~17% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

PionLT E12–19–006: D. Gaskell, T. Horn and G. Huber, spokespersons00

Projected Uncertainties for K⁺ Form Factor

- First measurement of F_K well above the resonance region.
- Measure form factor to Q²=3 GeV² with good overlap with elastic scattering data.
 - Limited by –*t*<0.2 GeV² requirement to minimize non–pole contributions.
- Data will provide an important second qq system for theoretical models, this time involving a strange quark.

 $p(e,e'K^{+})\Lambda$

KaonLT E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons

Upgrade Scenarios Considered

- Phase 1: higher energy beam, keep HMS+SHMS largely as is, with relatively small DAQ and PID upgrades
- See what can be accomplished in "cost effective approach"
- Goal: to extend kinematic range of L/T–separated measurements beyond what is possible with JLab 11 GeV beam
- **Phase 2:** Replace HMS with a new Very High Momentum Spectrometer (VHMS) to enable measurements utilizing full 22 GeV beam energy
- See what extra physics can be obtained for significantly larger investment

Phase 1 Scenario: π^+ **Form Factor**

7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility, with no major upgrades

- Experiment could be done as soon as beam energy is available!
- Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- Q²=8.5 and 11.5 Time FOM similar to PionLT Q²=6.0 and 8.5 points

	10.6 GeV	18.0 GeV	Improvement in δ <i>F_π/F_π</i>			
Q ² =8.5	Δε=0.22	Δε=0.40	16.8%→8.0%			
Q ² =10.0	New high quality F_{π} data					
Q ² =11.5	Larger F_{π} extraction uncertainty due to higher $-t_{\min}$					

p(e,e'π ⁺)n Kinematics						
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$egin{aligned} & heta_{q(SHMS)} \ & (\pi^+) \end{aligned}$	${\mathsf P}_{SHMS}\ (\pi^{\scriptscriptstyle +})$	Time FOM	
Q2=	=8.5 W	/=3.64	- <i>t_{min}</i> =0.2	24 Δε=0).40	
13.0	34.30	1.88	5.29	10.99	64.7	
18.0	15.05	6.88	8.94	10.99	2.2	
Q2=	10.0 <i>V</i>	V=3.44	- <i>t_{min}</i> =0.	37 Δε=	0.40	
13.0	37.78	1.83	5.56	10.97	122.7	
18.0	16.39	6.83	9.57	10.97	4.5	
$Q^2=11.5$ W=3.24 $-t_{min}=0.54$ $\Delta \epsilon=0.29$						
14.0	31.73	2.75	7.06	10.96	82.4	
18.0	17.70	6.75	10.05	10.96	8.8	

 Since quality L–T separations are impossible at EIC (can't access ε<0.95) this extension of L–T separated data considerably increases F_π data set overlap between JLab and EIC

Phase 1 Scenario: K⁺ Form Factor

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility
- Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- Success depends on good K⁺/π⁺ separation in SHMS at high momenta, likely requires a modest aerogel detector upgrade
- Counting rates are roughly 10x lower than pion form factor measurement

	10.6 GeV	16.0 GeV	Improvement in $\delta F_{\kappa}/F_{\kappa}$			
Q ² =5.5	Δε=0.33	Δε=0.40	17.9%→10.7%			
Q ² =7.0	New high quality F_{κ} data					
Q ² =9.0	Larger <i>F_K</i> extraction uncertainty due to higher -t _{min}					

p(e,e'K ⁺)Λ Kinematics						
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{q(SHMS)} \ (\pi^+)$	${\mathsf P}_{SHMS}\ (\pi^{\scriptscriptstyle +})$	Time FOM	
Q2=	=5.5 W	′=3.56	- <i>t_{min}</i> =0.	32 Δε=0	0.40	
11.0	30.69	1.79	5.50	8.84	746	
16.0	12.92	6.79	9.18	8.84	150	
Q2=	=7.0 W	′ =3.90	- <i>t_{min}</i> =0.	33 Δε=0	0.29	
14.0	25.16	2.64	5.51	10.98	620	
18.0	13.91	6.64	7.85	10.98	192	
$Q^2=9.0$ W=3.66 $-t_{min}=0.54$ $\Delta \epsilon=0.30$						
14.0	29.17	2.54	5.98	10.97	964	
18.0	15.90	6.54	8.69	10.97	350	

- *F_K* feasibility studies at EIC are ongoing, but we already know that such measurements there are exceptionally complex.
- JLab measurements likely a complement to those at EicC.

Phase 1: Form Factor Projections

- Y-axis values of projected data are arbitrary
- The errors are projected, based on Δε from beam energies on earlier slides, and T/L ratio calculated with Vrancx Ryckebusch model
- Assumes same statistics as acquired in PionLT experiment
- Inner error bar is projected statistical and systematic error
- Outer error bar also includes a model uncertainty in the form factor extraction, added in quadrature
- *F_π* errors based on Fπ–2 and E12–19–006 experience
- *F_K* errors more uncertain, as E12–09–011 analysis not yet completed, projected running times extremely long

Phase 2 Scenario: π^+ **Form Factor**

Replace HMS with VHMS for π⁺, use SHMS for e'

- **•**Assume θ_{min} =5.5°, θ_{open} =15.0°
- •VHMS: $\Delta\Omega$, $\Delta P/P$ similar SHMS
- P_{VHMS}=15.0 GeV/c is sufficient, constrained by max beam energy
- θ_{VHMS}~5.5° allows improved Δε, but does not affect maximum Q² reach
- θ_{SHMS} <12.0°, P_{SHMS} >9.0 not used
- Dramatic increase in upper Q² 11.5 → 15.0 GeV²
- Error bars for Q²=8.5–11.5 GeV² substantially decrease due to smaller $-t_{min}$ (better $R=\sigma_T/\sigma_L$) and shorter running times
- Q²=15.0 GeV² point would be very "expensive" in terms of running time, but it would likely have very high scientific priority

Feasible scenario for Phase 2 Upgrade

p(e,e'π ⁺)n Kinematics							
E _{beam}	θ _{SHMS} (e')	P _{SHMS} (e')	$ heta_{q(VHMS)} \ (\pi^+)$	${\mathsf P}_{VHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM		
Q ²	Q^2 =8.5 W=4.18 $-t_{min}$ =0.15 $\Delta \varepsilon$ =0.28						
17.0	21.39	3.63	5.55	13.29	20.5		
22.0	12.15	8.63	7.62	13.29	1.8		
Q ² :	=10.0	<i>W</i> =4.08	- <i>t_{min}</i> =0.2	21 Δε=0	.30		
17.0	24.49	3.27	5.52	13.62	53.3		
22.0	13.46	8.27	7.85	13.62	4.3		
Q2:	=11.5	W=3.95	- <i>t_{min}</i> =0.2	29 Δε=0).31		
17.0	27.34	3.03	5.55	13.82	124.8		
22.0	14.66	8.03	8.12	13.82	9.3		
Q2=	=13.0 V	<i>N</i> =3.96	- <i>t_{min}</i> =0.3	35 Δε=().25		
18.0	27.55	3.18	5.54	14.63	209.5		
22.0	16.49	7.18	7.69	14.63	24.4		
Q2=	=15.0 V	<i>N</i> =3.73	- <i>t_{min}</i> =0.8	52 Δε=().26		
18.0	30.24	3.06	5.73	14.66	560		
22.0	17.88	7.06	8.07	14.66	65.7		

Importance of JLab F_{π} in EIC Era

Quality L/T-separations impossible at EIC (can't access ε<0.95)
 JLab will remain ONLY source of quality L–T separated data!

- Phase 2: 22 GeV beam with upgraded VHMS
 - Extends region of high quality F_π values to Q²=13 GeV²
 Somewhat larger errors to Q²=15 GeV²
- Provides MUCH improved overlap of F_{π} data set between JLab and EIC!

Hard–Soft Factorization in DEMP

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
 - No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q² scaling regime has been reached
- One of the most stringent tests of factorization is the Q² dependence of the π/K electroproduction cross sections
 - σ_L scales to leading order as Q⁻⁶
 - σ_T does not, expectation of Q⁻⁸
 - As Q^2 becomes large: $\sigma_L >> \sigma_T$

Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results

- Is onset of scaling different for kaons than pions?
- K^+ and π^+ together provide quasi model-independent study

DEMP *Q*^{-*n*} Hard–Soft Factorization Tests

Garth Huber, huberg@uregina.ca

0.55

	<i>p(e</i> ,	,e'π ⁺)n	
¹ 0 do _c /dt (Jtp/GeV ²) 0 01 م 10 20	Fit: 1/Q ⁿ x _B =0.39 1/	Projected Err $- 1/Q^{6}$ $- 1/Q^{610.4}$ $1/Q^{4}$ $1/Q^{4}$ Q^{8} Q^{8} 5 5 5 5	E12–19–006 Projections
X	Q ² (GeV ²)	₩(GeV)	<i>−t_{min}</i> (GeV₂
0.31	1.45-3.65	2.02-3.07	0.12
	1.45–6.5	2.02-3.89	
0.39	2.12-6.0	2.05-3.19	0.21

2.05-3.67

2.02-2.79

2.02-3.23

2.12-8.2

3.85-8.5

3.85-11.5

PHASE 1 SCENARIO

2.32 - 3.70

3.0-8.7

Q⁻ⁿ scaling test range nearly doubles with 18 GeV beam and HMS+SHMS

0.55

Hard–Soft Factorization in Backward Exclusive π^0

Staged Upgrade Seems Logical

- Phase 1: Upgrade Beam to 18 GeV, minor upgrades of SHMS, HMS PID, tracking and DAQ
 - Example Measurements:
 - Pion form factor to Q²=10 GeV² with small errors, and to 11.5 with larger uncertainties
 - Kaon form factor requires very long running times, but could allow Q²=7.0 GeV² with small errors, and to 9.0 with larger uncertainties
 - Hard–Soft Q⁻ⁿ factorization tests with $p(e,e'\pi^+)n$ and $p(e,e'K^+)\Lambda$
 - Studies of backward angle Q⁻ⁿ factorization via u–channel p(e,e'p)π⁰ and p(e,e'p)ω
- Phase 2: Upgrade Beam to 22 GeV, upgrade VHMS to 15 GeV/c
 - Would enable a significant increase in Q² reach of quality L–T separations for Deep Exclusive Meson Production
 - e.g. Pion Form factor up to Q²=15 GeV²

The importance of L–T Separations

- Hall C is world's only facility that can do L–T separations over a wide kinematic range
- The error magnification in L–T separations depends crucially on the achievable difference in the virtual photon polarization parameter, ε.
 - Errors magnify as $1/\Delta\epsilon$, where $\Delta\epsilon = \epsilon_{High} \epsilon_{Low}$
 - To keep the magnification <500%, one desires $\Delta \epsilon$ >0.2
 - This is not feasible at the EIC, as the high ion ring energy constrains ε>0.98
- As the interpretation of some EIC data (e.g. GPD extraction) will depend on extrapolation of Hall C L–T separated data, maximizing overlap between Hall C and EIC data sets should be a high priority
 - An important motivation for extending reach of Hall C data using 22 GeV beam

14 GeV/c HMS Scenario: π^+ Form Factor

Time

P_{SHMS}

Replace HMS with a higher momentum spectrometer

- For high z reactions, such as DEMP, usable beam energy constrained by sum of HMS+SHMS maximum momenta
- i.e. 22 GeV beam energy is a larger constraint than the maximum HMS momentum
- New HMS would not extend the Q² reach beyond Scenario 1. However, it would result in smaller errors due to larger Δε and faster high ε data rates

	(e ⁻)	(e ⁻)	(π^+)	(π ⁺)	FOM		
Q ² =	$Q^2=8.5$ W=3.64 $-t_{min}=0.24$ $\Delta \epsilon=0.53$						
13.0	34.30	1.88	5.29	10.99	64.7		
22.0	10.81	10.88	10.23	10.99	0.6		
Q2=	$Q^2=10.0$ W=3.44 $-t_{min}=0.37$ $\Delta\epsilon=0.54$						
13.0	37.78	1.83	5.56	10.97	122.7		
22.0	11.76	10.83	10.97	10.97	1.3		
Q ² =	Q^2 =11.5 W=3.24 $-t_{min}$ =0.54 $\Delta \epsilon$ =0.29						
14.0	31.73	2.75	7.06	10.96	82.4		
22.0	12.66	10.75	11.56	10.96	2.5		
This scenario is judged to not							

 $p(e,e'\pi^+)n$ Kinematics

 θ_{HMS} | P_{HMS} | $\theta_{q(SHMS)}$

E_{beam}

This scenario is judged to not be worth it, at least for this reaction channel

Upgrade HMS Momentum and Angle: F_{π}

Upgrade both HMS momentum and forward angle capabilities

- 7 GeV/c \rightarrow 11 GeV/c
- $\bullet \theta_{min} = 10.50^{\circ} \rightarrow 7.5^{\circ}$
- $ilde{ heta}_{open}$ =18.00° ightarrow 15.00°
- This upgrade also does not extend the Q² reach beyond Scenario 1.
- However, it would result in smaller errors due to larger Δε and faster high ε data rates

p(e,e'π ⁺)n Kinematics						
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{q(SHMS)} \ (\pi^+)$	$P_{SHMS}\ (\pi^{\scriptscriptstyle +})$	Time FOM	
Q	² =8.5 V	<i>V</i> =3.64	- <i>t_{min}</i> =0.2	24 Δε=0	.53	
13.0	34.30	1.88	5.29	10.99	64.7	
22.0	10.81	10.88	10.23	10.99	0.6	
Q^2	² =10.0	W=3.44	- <i>t_{min}</i> =0.	.37 Δε=0	0.54	
13.0	37.78	1.83	5.56	10.97	122.7	
22.0	11.76	10.83	10.97	10.97	1.3	
$Q^2=11.5$ W=3.24 $-t_{min}=0.54$ $\Delta \epsilon=0.29$						
14.0	31.73	2.75	7.06	10.96	82.4	
22.0	12.66	10.75	11.56	10.96	2.5	

Basically the same as Scenario 2. Not worth it, at least for this channel

15 GeV/c SHMS Scenario: π^+ Form Factor

Replace SHMS with higher momentum spectrometer, but keep HMS as is

- Dramatic increase in upper Q^2 11.5 \rightarrow 15.0 GeV²
- Error bars for Q²=8.5–11.5 GeV² would substantially decrease due to smaller $-t_{min}$ (better $R=\sigma_T/\sigma_L$) and shorter running times

The Q²=15.0 GeV² point would be "expensive" in terms of running time, but its high scientific priority would make it worthwhile

This seems a compelling scenario for a Phase 2 Upgrade

p(e,e'π ⁺)n Kinematics							
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$egin{aligned} & heta_{q(SHMS)} \ & (\pi^+) \end{aligned}$	${\mathsf P}_{{ m SHMS}}\ (\pi^{\scriptscriptstyle +})$	Time FOM		
Q2=	Q^2 =8.5 W=4.06 $-t_{min}$ =0.17 $\Delta \epsilon$ =0.26						
16.0	23.68	3.15	5.52	12.75	17.7		
20.0	14.00	7.15	7.55	12.75	1.9		
Q2=	10.0 И	/=3.96	- <i>t_{min}</i> =0.2	23 Δε=0	.28		
16.0	27.41	2.78	5.41	13.09	47.7		
20.0	15.60	6.78	7.72	13.09	4.5		
Q2=	11.5 И	/=3.96	- <i>t_{min}</i> =0.2	29 Δε=0	.27		
17.0	27.54	2.98	5.49	13.86	76.3		
21.0	16.10	6.98	7.72	13.86	8.1		
Q ² = ²	13.0 W	/=3.96	- <i>t_{min}</i> =0.3	35 Δε=0).25		
18.0	27.55	3.18	5.54	14.63	123.6		
22.0	16.49	7.18	7.69	14.63	14.4		
Q2=*	Q ² =15.0 W=3.78 -t _{min} =0.50 Δε=0.27						
18.0	31.30	2.86	5.46	14.87	391		
22.0	18.14	6.86	7.86	14.87	41.4		

K⁺ properties also strongly influenced by EHM

- K⁺ PDA also is broad, concave and asymmetric.
- While the heavier s quark carries more bound state momentum than the *u* quark, the shift is markedly less than one might naively expect based on the difference of *u*, *s* current quark masses. (x)[C. Shi, et al., PRD 92 (2015) 014035]. 1.5 $\phi_{\pi}^{DCSB}(x)$ РР $\phi_{\pi}^{cl}(x)$ 0.5 Full calculation 0.0 $Q^{2}F_{K}$ / GeV² 5.0 0.25 0.0 0.50 0.75 1.0 u pQCD+DCSB • F_{κ} DCSB model prediction Conformal limit pQCD for JLab kinematics 0 [F. Guo, et al., arXiv: 1703.04875]. 20 5 10 15 0 Q^2 / GeV²