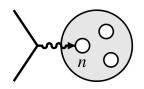
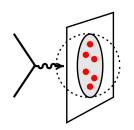
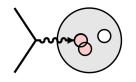
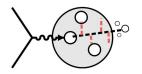
Nuclear dynamics at JLab 22 GeV

Wim Cosyn Florida International University

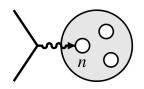

Hall A/C Collaboration meeting July 16, 2024

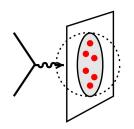


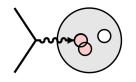

22 GeV white paper: 2306.09360 2024 LDRD proposal (PI C. Weiss)

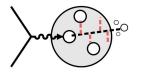


Nuclear (A>1) physics in high-energy scattering

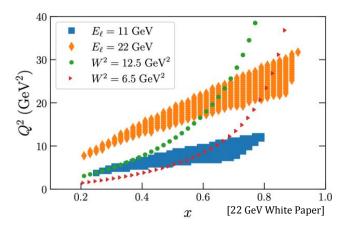



- Neutron structure
 - \rightarrow Flavor separation of distribution functions

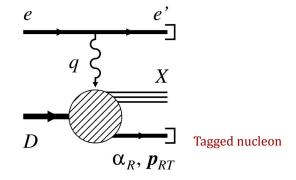

- Imaging nuclear bound states
 - \rightarrow Nuclear GPDs


- Nuclear interactions
 - \rightarrow Medium modifications of partonic structure
 - \rightarrow QCD origin of nuclear core
 - \rightarrow Superfast quarks
 - \rightarrow Nuclear gluons
- Nuclear medium as filter
 - \rightarrow Hadronization
 - \rightarrow Color transparency
 - \rightarrow hN cross section

Nuclear (A>1) physics in high-energy scattering

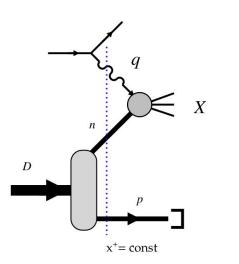

- Neutron structure
 - \rightarrow Flavor separation of distribution functions

- Imaging nuclear bound states
 - \rightarrow Nuclear GPDs


- Nuclear interactions
 - → Medium modifications of partonic structure
 - \rightarrow QCD origin of nuclear core
 - \rightarrow Superfast quarks
 - \rightarrow Nuclear gluons
- Nuclear medium as filter
 - \rightarrow Hadronization **X**
 - \rightarrow Color transparency
 - \rightarrow hN cross section

JLab 22 GeV with A>1

- High luminosity
- Polarized electron, light nuclei
- High Q^2 , **intermediate** to high *x*
 - \rightarrow Both valence and sea quarks
 - \rightarrow Antishadowing region

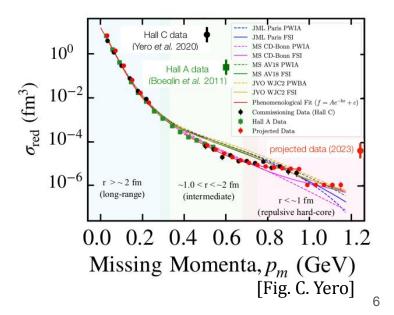


- Nuclei
 - \rightarrow Inclusive or coherent reactions
 - Average over all nuclear configurations
 - \rightarrow "Tagging" (nuclear breakup)
 - Select certain (exceptional) nuclear configurations
 - Final state interactions
- High-energy nuclear scattering is interplay of
 - → Low-energy nuclear structure
 - \rightarrow High-energy electron scattering

Theoretical framework

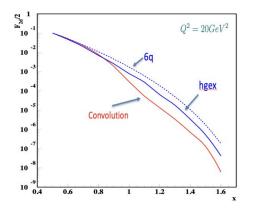
[Frankfurt, Strikman 80s+]

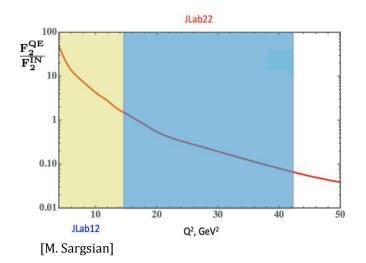
- Virtual photon probes nucleus at fixed lightfront time $x^+ = x^0 + x^3$
 - \rightarrow Fixes nuclear configuration during scattering
- Scales can be separated using methods of light-front quantization and QCD factorization
- Tools for high-energy scattering known from *ep*
- Nuclear input: light-front momentum densities, spectral functions, overlaps with specific final states in breakup/tagging reactions

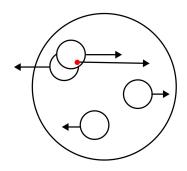

Still low energy nuclear physics

Quasi-elastic deuteron breakup: $e + d \rightarrow e' + p + n$

- Simplest nuclear system
 - \rightarrow Well understood, except...
 - → **Core!** [parametrized in potentials / contact terms in EFT]
- Simplest exclusive reaction (well understood: FSI/meson exchange/charge exchange)
- Large Q^2 needed to reach internal momenta ~1-1.5 GeV
- Beyond np component
 - \rightarrow $\Delta\Delta$ configurations (luminosity!)
 - \rightarrow Hidden color (6q state)
- Separation of S(L=0) and D(L=2) wave?
 - \rightarrow Unpolarized: $f_0^2 + f_2^2$

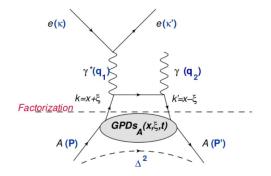

$$\rightarrow$$
 Tensor polarized: $\left(2f_0 + \frac{f_2}{\sqrt{2}}\right) \frac{f_2}{\sqrt{2}}$

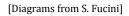

• Studies of 3N short-range dynamics in ³He breakup

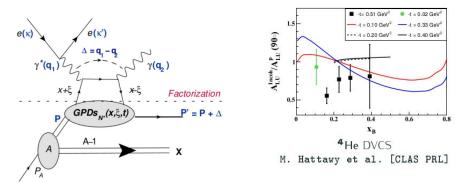


Superfast quarks

- In nuclei 0 < x < A ... in DIS corresponds to momentum fractions
 → 1 < x is superfast
- In convolution model of partonic nuclear structure originates from nucleons in correlation (large *p*)
- Needs large Q² to dominate over QE
 → Existing Jlab6 [Fomin, Arrington et al.]
- F₂ sensitive to core dynamics

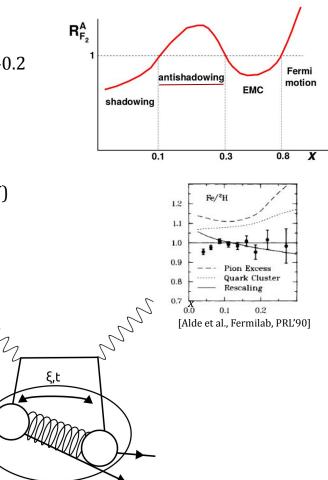





Deuteron DVCS

- Coherent
 - \rightarrow 3D imaging of nuclei
 - \rightarrow Clustering and spin-orbit phenomena
 - \rightarrow Tensor polarized deuteron sensitive to interactions

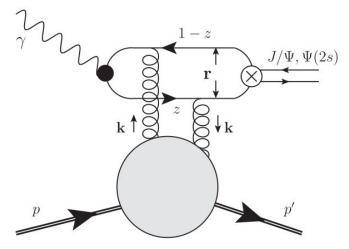
- Incoherent
 - \rightarrow Medium modification of nucleon GPD
 - \rightarrow Bethe Heitler has imaginary part
 - \rightarrow FSI contribute
- Beam charge asymmetries with positrons



Anti-Shadowing

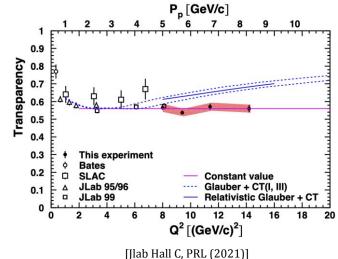
- Enhancement in inclusive nuclear ratio around $x \sim 0.1-0.2$
 - \rightarrow Valence + sea quarks

- No enhancement seen in dimuon production in *pA* (DY)
 - \rightarrow Rules out meson interactions

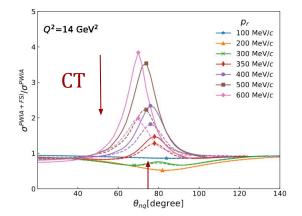

- More differential measurements can select specific nuclear configurations
 - \rightarrow Tagged deuteron DIS (spectator *p*)
 - \rightarrow Tagged deuteron DVCS (ξ ,t)

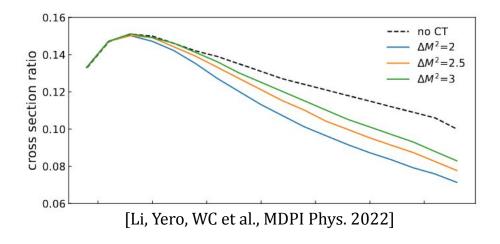
J/ψ Production on A = 2-4

- Gluonic distribution of light nuclei
 - \rightarrow Fourier transf. of nuclear form factor (coherent scatt.)
 - \rightarrow Nuclear modifications: convolution of nucleon gluonic structure and nuclear effects
- LHC: ultraperipheral collision (small *x*)
 EIC: *x* < 0.2
 JLab 22: *x* > 0.2


- Incoherent scattering
 - \rightarrow J/ ψ nucleon cross section (fully formed in nucleus)

[Fig. from Hentschinski, Molina PRD'21]


Color transparency


- Disappearance of medium interactions for hadrons in small-sized configuration
 - \rightarrow Produced in high-energy exclusive reactions
 - \rightarrow Necessary condition for factorization in exclusive processes
- Jlab 6/12: forward kinematics
 - \rightarrow CT = Reduction of absorption (transparency)
 - \rightarrow Not observed for protons
 - $\rightarrow \quad \text{Convincing hints for } \pi, \rho$
- JLab 22 can map out transition region

Color Transparency in "dirty" kinematics

- Look for CT in kinematics with high FSI
 - \rightarrow QE deuteron breakup
 - → Ratio $d\sigma(500 \text{ MeV})/d\sigma(200 \text{ MeV})$ decreases when CT is present

Conclusions: With 22 GeV

- Explore underexplored aspects of nuclear dynamics in QCD
 - \rightarrow Nuclear core
 - \rightarrow Antishadowing
- Image light nuclei in partonic degrees of freedom
 - \rightarrow Valence & sea quarks (GPDs)
 - \rightarrow Gluonic radius
- Breakup / tagging / exclusive enable differential studies of medium modification effects
- More that wasn't covered here...
- Needs dedicated efforts to extend theory frameworks, do simulations etc.
 - \rightarrow LDRD proposal