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Tracking needs for Hall A/C experiments

Some of the highest luminosity experiments ever: now and in the
future with large acceptance, open spectrometers

— Rates approaching MHz/cm?

— Need to cover large areas.

— Need to tolerate high radiation doses.

— require good spatial Resolution: ~0.1 mm
wire-chamber technology can’t deliver.

Given the areas involved silicon is not cost effective in most cases

Micro-Pattern Gas Detectors (MPGD) such as GEMs provide
attractive solutions.




Gaseous Detectors

* Predate nuclear physics: invented by Hans Geiger in 1908
(Rutherford, Geiger, Marsden gold foil experiment 1911)
» Essential features:
* lonization /drift region: high energy particles creates a trail of
electron-ion pairs in an inter gas (reduces recombination)
* ~ 1-2 Primary ionizations per mm (at 1 atm), energetic electrons
created; ionize more nearby atoms: ionization clusters.
« ~ 27 eV needed per ionization in Argon
* Electrons drift towards anode (v ~ few cm per us), ions drift to
cathode at speeds thousand times slower.
* Region of strong electric field (>~ 10 kV/cm/atm): electrons gain
sufficient energy between two collisions to cause ionization:
*Avalanche Multiplication.




Gaseous Detectors

» Avalanche increases exponentially:

dN = Nads.
N b
— = ds.
N exp/{Z ads

a is the first Townsend coefficient: depends on E, gas composition

and density. a and b are the boundaries of the region where E is

sufficiently strong.

* Gas gain for a wire chamber could be ~ 10°-106°.

* Photons created in avalanche could cause after-pulses away from
the primary track: unstable behavior and loss of resolution.

* A quencher, a molecular gas with high photo-absorption
coefficient: ex, CO2, hydrocarbon gases.



Gaseous Detectors: wire chambers

« Wire chamber Has been the work-horse of nuclear and particle
physics.

 highly efficient (> 99%)

* cost effective

* low mass

* Rad-hard

» could cover very large areas

* good position resolution (~ 100- 200 um for a MWDC)
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Issues with wire chambers

» Slow drift of ions back to the cathode causes space-charge issues
that limit the rate ( < ~ 10°/cm?, more commonly < 10%/cm?).

* High gain around sense wires contribute to high noise, unstable
behavior.

» secondary avalanches.

* lonization clusters limit position resolution

* Plasmas formed during avalanche formation in the strong E field
cause aging

» Long electron drifts: susceptible to magnetic field effects.



Micro-Pattern Gas Detectors (MPGD)

Solution to MWPC rate limitation: Fast evacuation of the ions == Combine Micro structure
technology with gas amplification - Birth of the MPGDs
, Micro Wire Chamber
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Micro-Pattern Gas Detectors (MPGD)
Two MPGD Technologies stood out

GEM: Gas Electron Multipliers
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GEM f{oil: Electron amplification device

Thin, metal-clad polymer foil chemically perforated by a high density of holes, typically 100/mm?
Voltage of ~ 350 V across the Cu electrode creates a strong field in the hole leading to amplification

The ionization pattern is preserved by design with the electric field focusing the charges inside the holes

GEM foil GEM hole parameters E Field pattern

i M%/m\i

igwie M Necmic feld and eguipotentials ek in e gas elecoron endnplier

UNIQUE FEATURE

Charge amplification is decoupled from the charge collection = Multi-stage amplification



Why GEMs ?

* Gas Electron Multiplier (GEM) detectors provide a cost effective solution
for high resolution tracking under high rates over large areas.

* Rate capabilities higher than many 100s of MHz/cm?

* High position resolution ( < 70 mm)

» Ability to cover very large areas ( 10s — 100s of m?) at modest cost.

* Low thickness (~ 0.5% radiation length)

* Already Used for many experiments around the world: COMPASS, CMS
upgrade, PRad, SBS etc.

 Now come in many sizes and shapes:

* To go to the highest possible rates need a pixel readout.

* With large areas and high resolution needs lead to impossible channel
counts

 Strip readouts give good resolution with affordable readout, but lead to
very high occupancy and multi-hit ambiguity.

« Large area (~ m?) strip readout limits to rates to less than ~ 0.5 MHz/cm?
* Need to come up with creative solutions.
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SBS GEM trackers

o 50 cm x 60 cm GEM modules for SBS rear tracker: 48 modules — 36 have been in
beam
o 150 cm x 40 cm large GEM modules for SBS front tracker: 6 modules — all in beam

UV (shown) XY (shown)
40 x 150 sg.cm 60 x 200 sqg.cm
Single module 4 modules
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SBS GEM:
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GEMs for MOLLER
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rate (GHz/sep/uA/(5mm)*2) vs xy(mm*"2)

* Precision coordinate
detection is needed for
calibration of the Setup.

« GEMs: a good choice

* Calibration to be done with
~ 100 nA beam; highest
local rates around 100
kHz/cm?
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MOLLER GEM design at UVa
Fabrication at UVA and SBU
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Particles distribution at GEM Module Rotator Orientation ~ GEM Module Rotator Orientation Events occurring very Geometry of a Single GEM
the Detector Plane during Calibration runs during Production runs close to the beam pipe Detector Module

The work at UVa

* 4 GEM tracking layers, 7 trapezoidal shaped e Engineering Design of GEM tracking detector module
detectors at each layer e Prototyping and Testing of GEM tracking Modules

e Only 50% azimuthal coverage cuts down overall costs o Engineering Design of GEM Polarimeter

e GEM layers can be rotated around the beam pipe axis e Mass fabrication of 16 (+2 spares) out of 28 (+4

e Pulled out during production runs (as shown above) spares) total tracking detector modules

e Different geometric requirements for each layer - one ¢ Fabrication of 2 GEM Polarimeters
single design to match with all 4 layers ¢ Commissioning, Operation and Data Analysis

‘Rotator’ Image courtesy - Chandika Amals;wam



GEMs for MOLLER
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GEMs for MOLLER
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’ :  Both UVA and SBU teams have built and
tested the prototype and first production

modules.

Major production run expected starting
this September.



GEMs for SoLID
« U-V readout: similar to MOLLER

EM Calorimeter;

SoLID (SIDIS and J/)

[EM|Calorimeter
S (largelangle)|
Scint} e
Target
—a
Collimator [

R T

| —

CoillandpYoke

Cherenkov  Cherenkov



GEMs for SoLID

SoLID requires a large collection of GEMs:
about 40 m? in the PVDIS configuration: ~2.5
more than SBS

High rates: similar to current rates on SBS
GEMs.

New challenge: Very high occupancies locally.

* Segment the strips in very high
occupancy areas

* Choice of electronics becomes critical
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Common challenge for SBS, SoLID and other high rate experiments in the
future: tracking with many possible combinations at high occupancies.

A possible solution: 2 or 3 pixel readout detectors with ~ 1x1 cm? pixels in
addition to strip layers.

Catchment area for a 1 cm? pixel ~ 6 times smaller than for a 50 cm strip:
much lower occupancy

Requiring .AND. between a pixel layers mostly eliminates random
background.

Clean tracks identified with coarse resolution: strip layers take over for
precise tracking.

skt 20 fibar 23 Onlina HEs Layer- D Onina HEsLayer: 1 Onine HitsLayer: 2 | Onina Hits Layer: 3 Online Hits Layar: 4 Detector 20 Strips |4

1536 ___‘arerd gemo

The 1 cm?2 pixel is a
good compromise size:
the number of pixels ~
number of strips for a
SBS or SoLID size
large detector.




Exciting new development in MPGE: u-Rwell
(Bencivenni ~ 2014)

Conventional uwell: high probability of electrical breakdown

Major step forward by Bencivenni: add a resistive layer: cuts down the breakdown

significantly

One limitation for Halls A/C applications: max rate was limited to ~ 100 kHz/cm?

The p-RWELL - Principle of Operation

The p-RWELL is a Micro Pattern Gaseous
Detector (MPGD) composed of only two
elements: the pW-RWELL PCB and the
cathode. The core is the p-RWELL_PCB,
realized by coupling three different elements:
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Applying a suitable voltage between the top Cu-
layer and the DLC the WELL acts as a
multiplication channel for the ionization
produced in the conversion/drift gas gap.

Slide from Dr. Bencivenni

Cathode PCB
Copper 5 um -2400V
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4
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Rigid PCB
electrode

a WELL patterned kapton foil acting as
amplification stage (GEM-like)

a resistive DLC layer (Diamond-Like-Carbon)
for discharge suppression with
surface resistivity ~ 50+100 MQ/O

a standard readout PCB



Very recent (2023) New development by Bencivenni group at
Frascati in collaboration with Rui De Oliveira at CERN:

PEP-dot u-Rwell: capable of rates over 10 MHz/cm?
The PEP-tot p-RWELL e

DLC-GND | Dead Zone | GND width | Insulation
pitch [mm [mm] [mm] gap [mm] [mm] * The most recent high rate layout
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1.1 (2%) 0.25 * The DLC ground connection is
established by creating metalized vias
Dead Zone from the top Cu layer through the

amplification i‘ . DLC, down to the pad-readout of the PCB
b e Cu 5 GND _ Kapt « The dead zone is ~2%
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One challenge still remains:
 M-Rwell: single amplification stage: gain ~ 1/5 of a GEM.
 Enough charge for 1D readout: ideal for pixels or 1D strips
* But not enough for 2D strip readout:
* leads to low efficiency.
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Getting to m-Rwell with 2D readout

N.2 u-RWELLs 1D (2x1D) u-RWELL - Capacitive Sharing r/out

Or Boosting the gain by adding a ) Lm ' X X X XXXXX X
GEM pre-amplification layer:

(from K. Gnanvo)
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Summary

* SBS run demonstrates that high rate GEM tracking over large
areas is feasible.

* High rate u-Rwell offers exciting possibilities.

* Need continued work in readout electronics to match the high rate
demands

 New MPGD center at Jlab: exciting R&D. Looking forward to a
bright MPGD future at Jlab.



