Angular correlations in pA collisions from initial state physics

Vladimir Skokov

April 9

- **Motivation**: Experimental results for pA collisions at LHC
- **"Glasma" graph**: Azimuthal asymmetry from connected diagrams in dilute-dense limit and high order cumulants
- Azimuthal anisotropy in McLerran-Venugopalan model: numerical results
- **Quantum corrections:** JIMWLK evolution and fate of the anisotropy
- Conclusions

• Fourier components and cumulants analysis

Hierarchy of harmonics $v_2\{2\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$ in high multiplicity events: • expected in AA collisions ("hydrodynamic flow"); • surprising for pA?!

EXPERIMENTAL RESULTS: PA II

• Negative $c_2{4} \equiv -v_2^4{4}$ at high multiplicity

 $c_{2}\{4\} = \langle \exp[i2(\phi_{1} - \phi_{2} + \phi_{3} - \phi_{4})] \rangle - 2 \langle \exp[i2(\phi_{1} - \phi_{2})] \rangle \langle \exp[i2(\phi_{3} - \phi_{4})] \rangle$

• Change of sign at $N \approx 60$.

Two distinct regimes defined by sign of c_2 {4}

EXPERIMENTAL RESULTS: PA III

• Anisotropy persists to high momentum

"GLASMA" GRAPH AND TWO-PARTICLE AZIMUTHAL ANISOTROPY

"GLASMA" GRAPH AND HIGHER-ORDER CUMULANTS

- Particular case: high k_{\perp} and dilute-dense limit
- It will be shown that the "glasma" graph approach are incapable to provide real $v_2{4}$

Two sources of anisotropy

"GLASMA" GRAPH AND HIGHER-ORDER CUMULANTS

- Particular case: high k_{\perp} and dilute-dense limit
- It will be shown that the "glasma" graph approach are incapable to provide real $v_2{4}$

Two sources of anisotropy

"GLASMA" GRAPH AND HIGHER-ORDER CUMULANTS

- Particular case: high k_{\perp} and dilute-dense limit
- It will be shown that the "glasma" graph approach are incapable to provide real $v_2{4}$

Two sources of anisotropy

S-matrix for dilute-dense limit: no large N_c approximation

Goal: to find $v_2\{n\}$ in dilute-dense limit at high k_{\perp}

• In eikonal approximation, parton propagation is described by light-like Wilson line $V(\vec{x}) = \mathcal{P} \exp\left(ig \int dx^{-}A^{+}(x^{-}, \vec{x})\right)$


```
Boosted field of target (A)
```

• S-matrix in momentum space: $\langle S_1(\vec{k}_{\perp}) \rangle = \frac{1}{d_R} \left\langle \text{tr}_R V(\vec{k}_{\perp}) V^{\dagger}(\vec{k}_{\perp}) \right\rangle$ or can be obtained from

$$\langle S_1(\vec{k}_\perp)\rangle = \int d^2b \; d^2r \; e^{i\vec{r}_\perp\vec{k}_\perp} \; S_1(\vec{x}_\perp,\vec{y}_\perp),$$

where $\vec{x}_{\perp} = \vec{b}_{\perp} + \vec{r}_{\perp}/2$ and $\vec{y}_{\perp} = \vec{b}_{\perp} - \vec{r}_{\perp}/2$ and $\langle S_1 \rangle = \frac{1}{d_R} \langle \operatorname{tr}_R V(\vec{x}_{\perp}) V^{\dagger}(\vec{y}_{\perp}) \rangle; \quad \boldsymbol{k}_{\perp} \propto 1/r_{\perp}; \quad \vec{r}_{\perp} = \vec{x}_{\perp} - \vec{y}_{\perp}$ d_R is dimension of representation \mathcal{R}

$$S_A(\vec{r}) = \frac{N_c^2 |S_F(\vec{r})|^2 - 1}{N_c^2 - 1}$$

 $S_F(\vec{r})$ can be complex, while $S_A(\vec{r})$ is real.

• Scattering to high transverse momentum corresponds to small $|\vec{r}| \propto 1/k_{\perp}$. Gradient expansion of vector potential $A^+(x^-, \vec{x})$ gives (fundamental representation only)

$$\langle S_1(\vec{r},\vec{b})\rangle - 1 = \left\langle \frac{(ig)^2}{2N_c} \operatorname{tr} \left(\vec{r} \cdot \vec{E}(\vec{b})\right)^2 + \frac{1}{2} \left[\frac{(ig)^2}{2N_c} \operatorname{tr} \left(\vec{r} \cdot \vec{E}(\vec{b})\right)^2 \right]^2 + O(r^6) \right\rangle$$

Light-cone electric field of target in covariant gauge $E^{i}(\vec{b}) = \int dx^{-}F^{+i} = -\partial^{i} \int dx^{-}A^{+}(x^{-}, \vec{b}).$

• For *m*-quarks (only leading order is shown)

$$\langle S_m \rangle - 1 = \left(\frac{(ig)^2}{2N_c}\right)^m \left\langle \operatorname{tr}(\vec{r}_{1,\perp}\vec{E}_1)^2 \operatorname{tr}(\vec{r}_{2,\perp}\vec{E}_2)^2 \cdots \operatorname{tr}(\vec{r}_{m,\perp}\vec{E}_m)^2 \right\rangle; \quad \vec{E}_i = \vec{E}(\vec{b}_{i,\perp})$$

• By knowing $\langle \vec{E}(\vec{b}_1)\vec{E}(\vec{b}_2)\rangle$, one can compute S_m , cumulants, $c_n\{m\}$ and harmonics $v_n\{m\}$ of azimuthal anisotropy.

Event averaging corresponds to averaging over target ensemble $\langle \vec{E}(\vec{b_1})\vec{E}(\vec{b_2})\rangle$.

In McLerran-Venugopalan model

$$\frac{g^2}{N_c} \langle \boldsymbol{E}_i^a(\vec{b}_1) \boldsymbol{E}_j^b(\vec{b}_2) \rangle = \frac{1}{N_c^2 - 1} \delta^{ab} \delta_{ij} \, Q_s^2 \, \Delta(\vec{b}_1 - \vec{b}_2)$$

Cumualnts of azimuthal anisotropy I

• Cumulants of azimuthal anisotropy can be readily computed. Cumulants are defined in such a way as to cancel disconnected pieces not associated with **single** particle azimuthal anisotropy. For example

$$c_n\{4\} = \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle_{\text{conn}} = \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle - 2\langle e^{in(\phi_1 - \phi_3)} \rangle^2$$

• In field theory, this corresponds to considering fully connected diagrams only Connected graph Disconnected graph

CUMUALNTS OF AZIMUTHAL ANISOTROPY II

• There are (2m-2)!! ways to contract $S_m(\vec{r}_1, \vec{b}_1, \dots, \vec{r}_m, \vec{b}_m)$ in fully connected way:

$$\langle S_m(\vec{r}_1, \vec{b}_1, \dots, \vec{r}_m, \vec{b}_m) - 1 \rangle^{\text{conn.}} = \left(\frac{-Q_s^2}{4} \right)^m \frac{1}{(N_c^2 - 1)^{m-1}} \\ \Delta(\vec{b}_1 - \vec{b}_2) \Delta(\vec{b}_2 - \vec{b}_1) \cdots \Delta(\vec{b}_{m-1} - \vec{b}_m) \Delta(\vec{b}_m - \vec{b}_1) \\ (\vec{r}_1 \vec{r}_2) (\vec{r}_2 \vec{r}_3) \cdots (\vec{r}_{m-1} \vec{r}_m) (\vec{r}_m \vec{r}_1) + \text{permutations.}$$

• Averaging with respect to impact parameters (for Gaussian $\Delta(\vec{b})$ with width R_c):

$$\langle S_m(\vec{r}_1, \dots, \vec{r}_m) - 1 \rangle^{\text{conn.}} = \left(\frac{-Q_s^2}{4}\right)^m \frac{1}{(N_c^2 - 1)^{m-1}} \frac{\xi^{m-1}}{m} \\ (\vec{r}_1 \vec{r}_2)(\vec{r}_2 \vec{r}_3) \cdots (\vec{r}_{m-1} \vec{r}_m)(\vec{r}_m \vec{r}_1) + \text{permutations.}$$

 $\xi = S_c/S_p = 1/N_D$, $S_c = \pi R_c^2$, S_p is the proton radius.

• In large N_c , normalization of angular averages is defined by disconnected contribution

$$\langle S_m(\vec{r}_1,\ldots,\vec{r}_m)-1\rangle^{\text{disc.}}\approx \left(-\frac{Q_s^2}{4}\right)^m\prod_{i=1}^m r_i^2.$$

V. S. 1412.5191

• Not all (2m - 2)!! terms contribute to cumulants. m!!(m - 2)!! nonzero terms are defined by all possible contractions of terms entering with opposite signs before ϕ 's in $e^{2i(\phi_1+\phi_2+\dots+\phi_n-\phi_{n+1}-\phi_{n+2}-\dots-\phi_{2n})}$.

• For 4 particles, $e^{2i(\phi_1 + \phi_2 - \phi_3 - \phi_4)}$

$c_2\{m\}$ from connected diagrams

• Final result

$$c_2\{m\} = \frac{m!!(m-2)!!}{m \ 2^m} \left(\frac{\xi}{N_c^2 - 1}\right)^{m-1}$$

• Suppressed by powers of
$$1/N_c^2$$
 and $\xi = S_c/S_p$.

• $c_2\{m\}$ are manifestly positive for any *m*.

• Same result remains true for adjoint representation (Casimir operators cancel in normalized observables).

• Harmonics are related to cumulants. Relation of flow coefficients to cumulants (see N. Borghini, P. M. Dinh and J. Y. Ollitrault 0105040)

 $v_2^{2k}\{2k\} = (-1)^{k+1} \times (\text{Numerical coefficient}) \times c_2\{m = 2k\} = \kappa_{2k}c_2\{m = 2k\}$

• First few κ_{2m} :

Order, 2m	2	4	6	8	10	12	14
$1/\kappa_{2m}$	1	-1	-4	33	-456	9460	-274800

• Idea behind these numbers: if we have dominating **single** particle azimuthal anisotropy $v_2\{1\}$ then

 $v_2^m\{m\} = v_2^m\{1\} +$ corrections

Purpose for hydrodynamics: extract genuine v_2 {1} and suppress "non-flow".

$$\kappa_{2m} = \frac{v_n^{2m} \{2m\}}{c_n \{2m\}}.$$

The notation and definitions from Borghini et al 0105040, expanding the generating equation up to order x^{2k}

$$\sum \frac{x^{2k}}{(k!)^2} \langle \langle |Q|^{2k} \rangle \rangle = \ln I_0(2x \langle Q \rangle).$$

and equating the coefficients of x^{2k} one obtains a relation between the cumulants and harmonics. Find the expansion of $\ln (I_0(2y))$ at $y = x\langle Q \rangle = 0$. The Bessel function can be represented as an infinite product $I_0(2y) = \prod_{k=1}^{\infty} \left(1 + \left(\frac{2y}{j_{0,k}}\right)^2\right)$ and thus

$$\ln\left(I_0(2y)\right) = \sum_{k=1}^{\infty} \ln\left(1 + \left(\frac{2y}{j_{0,k}}\right)^2\right) = \sum_{i=0}^{\infty} a_i y^{2i}, \quad a_i = \frac{(-1)^{i+1}}{i} \sum_{k=1}^{\infty} \left(\frac{2}{j_{0,k}}\right)^{2i}$$

For details see Appendix of V. S. 1412.5191

$$\kappa_{2m} = \frac{v_n^{2m} \{2m\}}{c_n \{2m\}} = (-1)^{m+1} \left[m!(m-1)! \sum_{k=1}^{\infty} \left(\frac{2}{j_{0,k}}\right)^{2m} \right]^{-1}$$

At large orders the sum can be approximated by the first term.

• Harmonics:

$$(v_2\{m\})^m = \frac{(-1)^{\frac{m}{2}+1}}{m\beta_m} \left(\frac{\xi}{N_c^2 - 1}\right)^{m-1}; \qquad \beta_m = 2\sum_{k=1}^{\infty} \left(\frac{2}{j_{0,k}}\right)^m \approx 2\left(\frac{2}{j_{0,1}}\right)^m$$

• Explicitly for second and fourth order:

$$v_2^2\{2\} = \frac{1}{4} \frac{\xi}{N_c^2 - 1}; \qquad v_2^4\{4\} = -\frac{1}{4} \left(\frac{\xi}{N_c^2 - 1}\right)^3$$

- v_2 {4} is complex!
- $m \to \infty$:

$$\lim_{m \to \infty} |v_2\{m\}| = \frac{\xi}{N_c^2 - 1} \frac{j_{0,1}}{2}; \qquad j_{0,1} = 2.40483$$

• Hierarchy of $|v_2\{m\}|$.

- Complex v₂{4k}, k ∈ Z;
 including v₂{4} and v₂{8}
- Experiment: high multiplicity pA $c_2\{4\} < 0 \rightsquigarrow v_2\{4\} \in \mathcal{R}$
- Theory: connected graph only $c_2\{4\} > 0 \rightsquigarrow v_2\{4\} \in C$
- In order to describe high k_⊥ with IS effects, one needs disconnected graphs with single azimuthal anisotropy

• For a hydro practitioner: "non-flow". However, very different from conventional non-flow contributions (i.e. resonance decay): long-range in rapidity, approximate equality of high order harmonics $|v_2\{m\}|$. • We can learn something! Measure $|v_2\{m\}|$ at multiplicity below N < 50.

MV model for high energy

- Large-x valence partons are modeled by random, recoilless color charges ρ^a(x
 _⊥) creating semi-classical small-x gluon fields A^a(x
 _⊥).
- Gaussian distribution of sources

$$S_{\rm eff}[\rho^a] = \int dx^- d^2 x_\perp \; \frac{\rho^a(x^-, \vec{x}_\perp) \, \rho^a(x^-, \vec{x}_\perp)}{2\mu^2}$$

• Weizsäcker-Williams fields:

$$A^{\mu a}(x^{-}, \vec{x}_{\perp}) = -\delta^{\mu +} \frac{g}{\nabla_{\perp}^{2}} \rho^{a}(x^{-}, \vec{x}_{\perp}) .$$

• Propagation of fundamental charge in this field

$$V(\vec{x}_{\perp}) = \mathbb{P} \exp\left\{-ig \int dx^{-} t^{a} A^{+a}(x^{-}, \vec{x}_{\perp})\right\}$$

• S-matrix for scattering charge off given target field configuration

$$S_{\rho}(\vec{r}_{\perp},\vec{b}_{\perp}) \equiv \frac{1}{N_c} \text{tr} V^{\dagger}(\vec{x}_{\perp}) V(\vec{y}_{\perp}), \quad \vec{r}_{\perp} \equiv \vec{x}_{\perp} - \vec{y}_{\perp} , \quad 2\vec{b}_{\perp} \equiv \vec{x}_{\perp} + \vec{y}_{\perp}$$

Details on numerical implementation: A. Dumitru, V. S. 1411.6630 T. Lappi 0711.3039

SINGLE CONFIGURATION I

- Normalization 1/r² mimics LO of isotropic part of cross-section
- Real part is dominated by $\cos 2\phi_r$

• Imaginary part is dominated by $\cos \phi_r$

SINGLE CONFIGURATION II

• Higher orders are seen in real part • Imaginary part is dominated by $\cos 3\phi_r$ This anisotropy is not correlated with spatial geometry of a collisions.

AMPLITUDES: DEFINITION

- Goal is to extract amplitudes of azimuthal anisotropy
- In each event Fourier decomposition is performed:

$$1 - \operatorname{Re} S_{\rho}(\vec{r}_{\perp}) \equiv D_{\rho}(\vec{r}_{\perp}) = \mathcal{N}(r_{\perp}) \left(1 + \sum_{n=1}^{\infty} A'_{2n}(r_{\perp}) \cos(2n\phi_r) \right)$$

$$\operatorname{Im} S_{\rho}(\vec{r}_{\perp}) = \mathcal{N}(r_{\perp}) \sum_{n=0}^{\infty} A'_{2n+1}(r_{\perp}) \cos((2n+1)\phi_r)$$

• To cancel trivial random phase:

$$A_n(r_\perp) = \frac{\pi}{2} |A'_{2n}(r_\perp)|$$

• Results are presented in terms of Q_s defined by $\langle S_{\rho} \rangle (r_s = \sqrt{2}/Q_s) \stackrel{!}{=} e^{-1/2}$

Amplitudes: even harmonics

- Largest amplitude: $\langle A_2 \rangle$
- Finite ⟨A₂⟩ at r → 0; ⟨A₂⟩ is approximately constant for r < 1/Q_s
- $\langle A_4 \rangle$ is significantly smaller
- Fit of $\langle A_2 \rangle$ motivated by h_1^g of distribution of linearly polarized gluons (for an unpolarized target) introduced in TMD factorization

$$\delta^{ij} f_1^g(x,\vec{k}^2) + \left(\hat{k}^i \hat{k}^j - \frac{1}{2} \delta^{ij} \right) h_1^{\perp g}(x,\vec{k}^2) \; .$$

In MV (A. Metz and J. Zhou, 1105.1991):

$$h_1^{\perp g}(x, \vec{r}^2) \propto \frac{1}{r^2 Q_s^2} \left[1 - \exp\left(-\frac{r^2 Q_s^2}{4}\right) \right]$$

AMPLITUDES: ODD HARMONICS

A. Dumitru, V. S. 1411.6630

- Expectation value of Im S_{ρ} is 0
- However, odd harmonics are non-zero!
- At small *r*, $\langle A_1 \rangle$ and $\langle A_3 \rangle$ approach zero, as expected from analytic arguments
 - (A. Dumitru and A. Giannini, 1406.5781)

$$\operatorname{Im} S_{\rho} \propto \alpha_s r^3 \cos \phi_r$$

Amplitudes: averaging over finite $ec{b}_{\perp}$

A. Dumitru, V. S. 1411.6630

BEYOND MV

- Beyond MV: inclusion of quantum fluctuations.
- Previous "mean-field" BK studies showed that azimuthal anisotropy decreases exponentially in Y.
 See A. Kovner & M. Lublinsky 1211.1928.
 - Anisotropic initial conditions $1 S \propto e^{-1/4Q_S^2 r^2(1 + \#\cos(2\phi))}$
 - BK equation assuming uniform distribution in impact parameter space

$$\partial_Y N(\vec{r}) = \frac{C_F \alpha(r^2)}{2\pi} \int d^2 \vec{r}_1 K(\vec{r}, \vec{r}_1) \left(N(\vec{r}_1) + N(\vec{r}_2) - N(\vec{r}) - N(\vec{r}_1) N(\vec{r}_2) \right)$$

• In this particular set up I was able to reproduce their conclusion: azimuthal anisotropy decays very fast with $Y = \ln(x_0/x)$.

- Crucial assumption: no impact parameter space dependence
- Even at level of initial condition (given by MV model), azimuthal anisotropy of $S(\vec{r}, \vec{b})$ arises due to fluctuations of soft fields in transverse impact parameter plane.
- **JIMWLK** equation with both \vec{r} and \vec{b} .

Evolution over a step ΔY in rapidity opens up phase space for radiation of gluons and modifies classical action. This is taken into account by functional renormalization group equation, JIMWLK.

JIMWLK II

A. Dumitru, V. S. 1411.6630

SINGLE PARTICLE ANISOTROPY

- Kovner&Lublinsky: Re $S_{\rho} 1 = \frac{(ig)^2}{2N_c} tr(\vec{r}\vec{E})^2$; If projectile partons scatter off same electric field, they pick up same transverse momentum (independent on rapidity of partons).
- To take this into account, let modify E E correlator:

$$\frac{g^2}{2N_c} \left\langle \operatorname{tr} E_i(\vec{b}_{1\perp}) E_j(\vec{b}_{2\perp}) \right\rangle = \frac{1}{4} Q_s^2 \,\Delta(\vec{b}_{1\perp} - \vec{b}_{2\perp}) \left(\delta^{ij} + 2 \,\mathcal{A} \left(\frac{\hat{a}^i \hat{a}^j}{4} - \frac{1}{2} \delta^{ij} \right) \right)$$

• Angular distribution for scattering of single dipole, for fixed \hat{a} .

$$\left(\frac{1}{\pi}\frac{dN}{dk^2}\right)^{-1} \frac{dN}{d^2k} = 1 - 2\mathcal{A} + 4\mathcal{A}(\hat{k}\cdot\hat{a})^2 .$$

Consequently, elliptic harmonic of single-particle distribution: $v_2 \equiv \left\langle e^{2i(\phi_k - \phi_a)} \right\rangle_{\hat{a}} = \mathcal{A}$. • Repeating calculations, see details in [†]:

$$v_{2}^{2}\{2\} = c_{2}\{2\} = \xi \left(\mathcal{A}^{2} + \frac{1}{4(N_{c}^{2} - 1)}\right)$$
$$v_{2}^{4}\{4\} = -c_{2}\{4\} = \xi^{3} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}}\right)$$

A. Kovner, M. Lublinsky,1109.0347, 1211.1928; [†] A. Dumitru, L. McLerran, V.S. 1410.4844; Factors of $\xi = 1/N_D$: partons scatter off domain with same \vec{E} orientation.

A. Dumitru, A. Giannini 1406.5781
A. Dumitru, V. S. 1411.6630

ALICE Coll. 1406.2474

$$c_2\{4\} = -\xi^3 \left(\mathcal{H}^4 - \frac{1}{4(N_c^2 - 1)^3} \right)$$

- Interpretation in terms of IS:
 - N_{ch} < 60: dominated by connected contribution to c₂{4}
 - N_{ch} > 60: dominated by single particle disconnected contribution to c₂{4}

SINGLE PARTICLE ANISOTROPY: ILLUSTRATION OF HIERARCHY

- In general it is immensely difficult to derive general expression for $v_2\{m\}$.
- Limiting cases are easy:
- Connected graphs dominate:

$$(v_2\{m\})^m = \frac{(-1)^{\frac{m}{2}+1}}{m\beta_m} \left(\frac{\xi}{N_c^2 - 1}\right)^{m-1};$$

• $\mathcal{A}(\text{single particle anisotropy})$ dominates:

$$v_2{m} = \xi^{1-1/m} \mathcal{A};$$
 at large $m \quad v_2{m} = \xi \mathcal{A}$

- Single particle anisotropy:
 - •[A] for fundamental representation S_F has odd harmonics, e.g. $\cos(3\phi)$;
 - •[B] for adjoint representation S_A is manifestly real and thus can have only even harmonics (S_A)
- Two particle azimuthal anisotropy: [A] does not help much if there is an approximate quark—anti-quark symmetry of projectile wave function at small *x*. Indeed, two particle correlation function summed over *qq*, *qq*, *qq*, *qq* and *qq* channels is *C*-even

$$S_2 \propto \left(\operatorname{tr} V^{\dagger}(\vec{x}_1) \, V(\vec{y}_1) + \, \operatorname{tr} V(\vec{x}_1) \, V^{\dagger}(\vec{y}_1) \right) \left(\operatorname{tr} V^{\dagger}(\vec{x}_2) \, V(\vec{y}_2) + \, \operatorname{tr} V(\vec{x}_2) \, V^{\dagger}(\vec{y}_2) \right)$$

and so has even cumulants only.

• Obtaining non-zero c_1 {2} and c_3 {2} may require to account for (at least) one additional soft rescattering of (anti-) quarks besides their hard scattering from target shockwave.

- Neglecting initial state one-particle azimuthal anisotropy: complex v_2 {4}
- Initial state one-particle azimuthal anisotropy is present due to fluctuating valence quarks. This disconnected contribution to c_2 {4} results in real v_2 {4}
- MV model:

even amplitudes $\langle A_2 \rangle$ and $\langle A_4 \rangle$ of azimuthal anisotropy are approximately constant for $k_{\perp} > Q_s$ ($r_{\perp} < 1/Q_s$);

odd amplitudes $\langle A_1 \rangle$ and $\langle A_3 \rangle$ approach zero at $k_{\perp} \to \infty (r_{\perp} \to 0)$

 $\langle A_2(k_{\perp} \sim Q_s) \rangle \approx 20\% \quad \langle A_4(k_{\perp} \sim Q_s) \rangle \approx 4.7\%$

- Small-*x* evolution does not significantly modify anisotoropy
- Does $v_2\{m\}$ has a direct connection to TMD h_1^g ?!
- No multiplicity bias were imposed in our studies.

Fluctuations of A_2

A. Dumitru, V. S. 1411.6630

Amplitudes: large r

A. Dumitru, V. S. 1411.6630

- Fit breaks down at large *r* > 3*Q*_s: analytical derivation involves adhoc IR cut-offs introduced arbitrary
- Amplitudes approach common non-zero function at large *r*: expected universal scale invariance of fluctuations of azimuthal dependence of S-matrix

A. Dumitru, V. S. 1411.6630