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Summary
• Charmed and Baryon spectrum 

• observations 

• Lattice QCD calculation 

• Methodology 

• Heavy quarks on the lattice 

• Results and comparisons with models and 
observations
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The flavor symmetries shown in Fig. 2 are of course badly

broken, but the figure is the simplest way to see what charmed

baryons should exist. For example, from Fig. 2(b), we expect

to find, in the same JP = 1/2+ 20 ′-plet as the nucleon, a Λc, a

Σc, two Ξc’s, and an Ωc. Note that this Ωc has JP = 1/2+ and

is not in the same SU(4) multiplet as the famous JP = 3/2+

Ω−.

Figure 2: SU(4) multiplets of baryons made
of u, d, s, and c quarks. (a) The 20-plet with
an SU(3) decuplet on the lowest level. (b) The
20 ′-plet with an SU(3) octet on the lowest level.
(c) The 4-plet. Note that here and in Fig. 3,
but not in Fig. 1, each charge state is shown
separately.

Figure 3 shows in more detail the middle level of the 20 ′-plet

of Fig. 2(b); it splits apart into two SU(3) multiplets, a 3̄ and a

6. The states of the 3̄ are antisymmetric under the interchange

of the two light quarks (the u, d, and s quarks), whereas the

states of the 6 are symmetric under this interchange. We use a

prime to distinguish the Ξc in the 6 from the one in the 3̄.
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Fig. 1. (a) The known charmed baryons, and (b) the
lightest “4-star” strange baryons. Note that there are two
JP = 1/2+ Ξc states, and that the lightest Ωc does not
have J = 3/2. The JP = 1/2+ states, all tabbed with
a circle, belong to the SU(4) multiplet that includes the
nucleon; states with a circle with the same fill belong
to the same SU(3) multiplet within that SU(4) multiplet.
Similar remarks apply to the other states: same shape of
tab, same SU(4) multiplet; same fill of that shape, same
SU(3) multiplet. The JP = 1/2− and 3/2− states tabbed
with triangles complete two SU(4) 4̄ multiplets.
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Unobserved states

Ξcc

Ωcc

Ωccc

Ξbb

Ωbb

Ωbbb

Ξbc

Ωbc

Ωbbc Ωbcc

Mixed flavorMulti-bottomMulti-charm



Controversies

Ξcc
+ Reported by SELEX

. Phys. Rev. Lett. 89 (2002) 112001, arXiv:hep-ex/0208014           

Not found by FOCUS, BaBar, Belle LHCb

Nucl. Phys. Proc. Suppl. 115 (2003) 33–36 .

Phys. Rev. D 74 (2006) 011103, arXiv:hep-ex/0605075 

Phys. Rev. Lett. 97 (2006) 162001, arXiv:hep-ex/0606051 

JHEP 1312 (2013) 090,  arXiv:1310.2538 [hep-ex] 

.       



• First principles calculations can predict masses of 
unobserved states 

• Can help resolve controversies  

• Complete Lattice QCD calculations of the ground 
state masses are now possible



15. Quark model 21

Figure 15.7: Spectroscopy for mesonic systems containing one or more heavy quarks
(adapted from Ref. 50). Particles whose masses are used to fix lattice parameters are shown
with crosses; the authors distinguish between “predictions” and “postdictions” of their
calculation. Lines represent experiment.

fit the correlation functions to functional forms parametrized by a set of masses and matrix
elements. As we move away from hadrons which can be created by the simplest quark model
operators (appropriate to the lightest meson and baryon multiplets) we encounter a host of new
problems: either no good interpolating fields, or too many possible interpolating fields, and many
states with the same quantum numbers. Techniques for dealing with these interrelated problems
vary from collaboration to collaboration, but all share common features: typically, correlation
functions from many different interpolating fields are used, and the signal is extracted in what
amounts to a variational calculation using the chosen operator basis. In addition to mass spectra,
wave function information can be garnered from the form of the best variational wave function.
Of course, the same problems which are present in the spectroscopy of the lightest hadrons (the
need to extrapolate to infinite volume, physical values of the light quark masses, and zero lattice
spacing) are also present. We briefly touch on three different kinds of hadrons: excited states of
baryons, glueballs, and hybrid mesons. The quality of the data is not as good as for the ground
states, and so the results continue to evolve.

Ref. 60 is a good recent review of excited baryon spectroscopy. The interesting physics
questions to be addressed are precisely those enumerated in the last section. An example of a
recent calculation, due to Ref. 61 is shown in Fig. 15.10. Notice that the pion is not yet at its
physical value. The lightest positive parity state is the nucleon, and the Roper resonance has not
yet appeared as a light state.
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Figure 15.8: Lattice predictions for masses of singly-charmed baryons. Data are labeled
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Figure 15.9: Lattice predictions for masses of doubly-charmed baryons. Data are ETMC,
Ref. 54; Liu, Ref. 55; Briceno, Ref. 56; PACS-CS, Ref. 57; Mathur and Mathur-PP, Ref. 58.
and Na, Ref. 59.

Exotic mesons share the difficulties of ordinary excited states, and some recent calculations
actually include both kinds of states in their combined fits. Ref. 62 provides a good summary
of the theoretical and experimental situation regarding mesons with exotic quantum numbers,
including a compilation of lattice data. The lightest exotics, the h0, η1, and h2, have long been

August 21, 2014 13:18

22 15. Quark model

 2.2

 2.4

 2.6

 2.8

 3

 3.2

Σc Σc
* Ωc Ωc

* Ξ’
c Ξ’*

c Ξc Λc

m
fi

t 
(G

e
V

)

ETMC
Liu

Briceno
Mathur

PACS-CS
MathurPP

EXP +ve P

EXP -ve P

QUARKS: (uuc) (ssc) (usc) (udc)

SPIN:1/2 3/2 1/2 3/2 1/2 3/2 1/2 1/2
Figure 15.8: Lattice predictions for masses of singly-charmed baryons. Data are labeled
ETMC, Ref. 54 Liu, Ref. 55; Briceno, Ref. 56; PACS-CS, Ref. 57; and Mathur and
Mathur-PP, Ref. 58. Lines are from experiment (positive and negative parity states).

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

Ξcc Ξcc
* Ωcc Ω*

cc

m
fi

t 
(G

e
V

)

 ETMC
Liu

Na
Briceno

Mathur
PACS-CS

MathurPP

QUARKS: (ucc) (scc)
SPIN: 1/2 3/2 1/2 3/2

Figure 15.9: Lattice predictions for masses of doubly-charmed baryons. Data are ETMC,
Ref. 54; Liu, Ref. 55; Briceno, Ref. 56; PACS-CS, Ref. 57; Mathur and Mathur-PP, Ref. 58.
and Na, Ref. 59.

Exotic mesons share the difficulties of ordinary excited states, and some recent calculations
actually include both kinds of states in their combined fits. Ref. 62 provides a good summary
of the theoretical and experimental situation regarding mesons with exotic quantum numbers,
including a compilation of lattice data. The lightest exotics, the h0, η1, and h2, have long been

August 21, 2014 13:18

Flavored baryons (LQCD vs Exp) 

C. Alexandrou et al., Phys. Rev. D86, 114501 (2012). 

L. Liu et al., Phys. Rev. D81, 094505 (2010). 

R. A. Briceno, H. -W. Lin, and D. R. Bolton, Phys. Rev. D86, 094504 (2012). 

Y. Namekawa [PACS-CS Collab.], PoS LATTICE 2012, 139 (2012). 

S. Basak et al., PoS LATTICE 2012, 141 (2012). 

H. Na and S.A. Gottlieb, PoS LAT2007, 124 (2007); PoS LATTICE2008, 119 (2008).   PDG 2014



Outline of LQCD calculations
• Include the vacuum polarization effects 

• 2 light (up down) 1 heavy (strange)  
• ... and ... 1 very heavy (charm) 

• Finite Volume 
• Compute in multiple and large volumes 

• Continuum Limit 
• Compute with several lattice spacings  

• Quark masses 
• Compute with several values for the quark masses 
• Study quark mass dependence of QCD 
• Physical light (up down) quark masses



Light quark actions

• Straight forward to put on the lattice 

• Fermion doubling problem  

• Wilson action, Kogut-Susskind action 

• Chiral symmetry breaking  

• Flavor symmetry breaking (KS) 

• Domain Wall fermions or Overlap fermions 

• Chiral symmetry 

• O(a2) lattice spacing errors

Light quarks (up, down, strange) 
pxpxpxpxpxpx

mq ⇥ �QCD � 250MeV



pxpxpxpxpxpx

mcharm � 1300 MeV

mbottom � 4200 MeV

mtop � 174200 MeV

pxpxpxpxpxpx

L = Lwilson +O(a)

pxpxpxpxpxpx

0.4 < amcharm < 0.8
1.3 < ambottom < 2.7

Light quarks (up, down, strange) 
pxpxpxpxpxpx

mq ⇥ �QCD � 250MeV

The heavy quark action

Heavy quarks (charm, bottom, top) 
pxpxpxpxpxpx

mq � �QCD

Lattice fermion  Lagrangians assume  for light quirks a mq <<  1 

For typical lattice QCD calculations ( a=0.125fm, 0.09fm, 0.06fm)

Special care is needed in treating heavy quarks on the lattice
Or use very small lattice spacing (a < 0.01fm).....



The heavy quark action (charm)

 These coefficients can be computed perturbatively. At tree-level             
(with tatdpole improvement)

pxpxpxpxpxpx

S0 =
�

x

q̄(x)[m0 + (�0⇤0 �
1
2
⇥0) + ⇥

�

i

(�i⇤i �
1
2
⇥i)]q(x)

pxpxpxpxpxpx

S = S0 + SB + SE

Fermilab action: Symanzik improvement taking into account a mq ~  1

For  Wilson action ν =1 for  light quarks. For heavy quarks ν  needs to be 
adjusted to remove lattice artifacts O(m a).

A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie, Phys. Rev. D55, 3933 (1997)

pxpxpxpxpxpx

SB = �1
2
cB

�

x

q̄(x)(
�

i<j

�ijFij)q(x) SE = �1
2
cE

�

x

q̄(x)(
�

i

�0iF0i)q(x)

The O(a) lattice artifacts are removed by the terms

pxpxpxpxpxpx

cB =
�

u3
0

, cE =
1
2
(1 + �)

1
u3

0

 P. Chen, Phys. Rev. D64, 034509 (2001)



Heavy quark action (cont.)

4

Data sets amb u0L c4

C104, C14, C24, C54, C53 2.52 0.8439 1.09389

F23, F43, F63 1.85 0.8609 1.07887

TABLE II. Parameters used in the NRQCD action for the bottom quarks.

of the action using the Landau-gauge mean link, u0L [76], and set the matching coe�cients c1 through c3 to their
tree-level values (ci = 1). The matching coe�cient c4 was computed to one-loop in perturbation theory [77]. We
tuned the bare b-quark mass by requiring that the spin-averaged bottomonium kinetic mass agrees with experiment
(see Ref. [72] for details). The resulting values of amb, as well as the values of u0L and c4 are given in Table II. The
values of c4 are specific for our gauge action (the Iwasaki action), and were computed for us by Tom Hammant.

When applied to hadrons containing only a single b-quark and no charm quarks, the power counting for the NRQCD
action is di↵erent. In this case, the expansion parameter is ⇤/mb, and the action shown above is complete through

order (⇤/mb)2. For singly bottom hadrons, the operator �c4
g

2mb
� · eB in �H is of the same order in the power

counting as the operator H0, while all other operators are of higher order. This means that the one-loop matching
used for c4 is especially important for heavy-light hadrons.

C. Charm quark action

Because the nonrelativistic expansion converges poorly for charm quarks (and because lattice NRQCD requires
am > 1, which is not satisfied for the charm quark on the present lattices), we used instead a relativistic heavy
quark action [57–63]. Beginning with a clover fermion action, separate coe�cients are introduced for the spatial and
temporal components of the operators, so that the action becomes

SQ = a4
X

x

Q̄

2

4mQ + �0r0 � a

2
r(2)

0 + ⌫
3X

i=1

⇣
�iri � a

2
r(2)

i

⌘
� cE

a

2

3X

i=1

�0iF0i � cB
a

4

3X

i, j=1

�ijFij

3

5Q . (5)

The (bare) parameters are the mass mQ, the anisotropy ⌫, and the chromoelectric and chromomagnetic coe�cients
cE , cB . Discretization errors proportional to powers of the heavy-quark mass can then be removed to all orders by
allowing the coe�cients ⌫, cE , and cB to depend on amQ and tuning them. The remaining discretization errors are
of order a2|p|2, where |p| is the typical magnitude of the spatial momentum of the heavy quark inside the hadron.
The standard clover action with ⌫ = 1 and cE = cB = cSW is recovered in the continuum limit.

Several di↵erent approaches have been suggested for determining the parameters mQ, ⌫, cB , and cE [57–63]. Here
we followed Ref. [41] and tuned the two parameters mQ and ⌫ nonperturbatively while setting the coe�cients cE , cB

equal to the values predicted by tadpole-improved tree-level perturbation theory [58],

cE =
(1 + ⌫)

2u3
0

, cB =
⌫

u3
0

. (6)

We set the tadpole improvement parameter u0 equal to the fourth root of the average plaquette. In order to tune the
parameters mQ and ⌫, we nonperturbatively computed the energies of the charmonium states ⌘c and J/ at zero and
nonzero momentum, and extracted the “speed of light” in the J/ dispersion relation,

c2(p) =
E2

J/ (p) � E2
J/ (0)

p

2
, (7)

as well as the spin-averaged mass

M =
3

4
EJ/ (0) +

1

4
E⌘c(0). (8)

The parameters mQ and ⌫ need to be adjusted such that M agrees with the experimental value and the relativistic
continuum dispersion relation is restored, i.e., c = 1.

We obtained the energies EJ/ , E⌘c from single-exponential fits at large Euclidean time to the two-point functions

C(p, t) =
X

x

e�ip·(x�xsrc)
⌦
O(x, tsrc + t) O(xsrc, tsrc)

↵
, (9)

4
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Several di↵erent approaches have been suggested for determining the parameters mQ, ⌫, cB , and cE [57–63]. Here
we followed Ref. [41] and tuned the two parameters mQ and ⌫ nonperturbatively while setting the coe�cients cE , cB

equal to the values predicted by tadpole-improved tree-level perturbation theory [58],

cE =
(1 + ⌫)

2u3
0

, cB =
⌫
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. (6)

We set the tadpole improvement parameter u0 equal to the fourth root of the average plaquette. In order to tune the
parameters mQ and ⌫, we nonperturbatively computed the energies of the charmonium states ⌘c and J/ at zero and
nonzero momentum, and extracted the “speed of light” in the J/ dispersion relation,

c2(p) =
E2

J/ (p) � E2
J/ (0)

p

2
, (7)

as well as the spin-averaged mass

M =
3

4
EJ/ (0) +

1

4
E⌘c(0). (8)

The parameters mQ and ⌫ need to be adjusted such that M agrees with the experimental value and the relativistic
continuum dispersion relation is restored, i.e., c = 1.

We obtained the energies EJ/ , E⌘c from single-exponential fits at large Euclidean time to the two-point functions

C(p, t) =
X

x

e�ip·(x�xsrc)
⌦
O(x, tsrc + t) O(xsrc, tsrc)

↵
, (9)

Tune ν and m0 so that the speed of light is 1 and the spin 
averaged meson mass matches experiment 



Heavy quark action (Bottom quark)

3

Set N3
s ⇥ Nt � am

(sea)
u,d am

(sea)
s a (fm) am

(val)
u,d am

(val)
s m

(vv)
⇡ (MeV) m

(vv)
⌘s (MeV) Nmeas

C104 243 ⇥ 64 2.13 0.01 0.04 0.1139(18) 0.01 0.04 419(7) 752(12) 2554

C14 243 ⇥ 64 2.13 0.005 0.04 0.1119(17) 0.001 0.04 245(4) 761(12) 2705

C24 243 ⇥ 64 2.13 0.005 0.04 0.1119(17) 0.002 0.04 270(4) 761(12) 2683

C54 243 ⇥ 64 2.13 0.005 0.04 0.1119(17) 0.005 0.04 336(5) 761(12) 2780

C53 243 ⇥ 64 2.13 0.005 0.04 0.1119(17) 0.005 0.03 336(5) 665(10) 1192

F23 323 ⇥ 64 2.25 0.004 0.03 0.0849(12) 0.002 0.03 227(3) 747(10) 1918

F43 323 ⇥ 64 2.25 0.004 0.03 0.0849(12) 0.004 0.03 295(4) 747(10) 1919

F63 323 ⇥ 64 2.25 0.006 0.03 0.0848(17) 0.006 0.03 352(7) 749(14) 2785

TABLE I. Properties of the gauge field ensembles [68] and of the light/strange quark propagators we computed on them. Here,

Ns and Nt are the numbers of lattice points in the spatial and temporal directions, � = 6/g2 is the gauge coupling, am
(sea)
u,d

and am
(sea)
s are the light and strange sea quark masses, and a is the lattice spacing (determined in Ref. [72]). The valence

quark masses used for the calculation of the light and strange quark propagators are denoted by am
(val)
u,d and am

(val)
s . The

corresponding valence pion and ⌘s masses are denoted as m
(vv)
⇡ and m

(vv)
⌘s . The ⌘s is an artificial ss̄ state that is defined

by treating the s and s̄ as di↵erent, but mass-degenerate flavors. This state is useful as an intermediate quantity to tune
the strange-quark mass [73]; its mass at the physical point has been computed precisely by the HPQCD collaboration and

is m
(phys)
⌘s = 689.3(1.2) MeV [74]. In the last column of the table, Nmeas is the number of pairs of light and strange quark

propagators computed in each data set.

B. Bottom quark action

The typical momentum of a bottom quark inside a hadron at rest is much smaller than the bottom-quark mass. For
hadrons containing only a single bottom quark and no charm quarks, one expects h|pb|i ⇠ ⇤ ⇠ 500 MeV [1, 75]. For
bottomonium and triply bottom baryons, one expects h|pb|i ⇠ mbv ⇠ 1.5 GeV, corresponding to v2 ⇠ 0.1 [64]. For
hadrons containing both bottom and charm quarks, the typical momentum of the b quark is between these extremes.
In all cases, the separation of scales, h|pb|i ⌧ mb, allows the treatment of the b quarks with nonrelativistic e↵ective
field theory. Here we used improved lattice NRQCD, which was introduced in Refs. [64, 65]. The b-quark is described
by a two-component spinor field  , with Euclidean lattice action

S = a3
X

x,t

 †(x, t)
⇥
 (x, t) � K(t)  (x, t � a)

⇤
, (1)

where

K(t) =

✓
1 � a �H|t

2

◆✓
1 � aH0|t

2n

◆n

U †
0 (t � a)

⇥
✓

1 � aH0|t�a

2n

◆n ✓
1 � a �H|t�a

2

◆
. (2)

In Eq. (2), U0(t � a) denotes a temporal gauge link, and H0 and �H are given by

H0 = ��(2)

2mb
, (3)

�H = �c1

�
�(2)

�2

8m3
b

+ c2
ig

8m2
b

⇣
r · eE � e

E · r
⌘

�c3
g

8m2
b

� ·
⇣
er ⇥ e

E � e
E ⇥ er

⌘
� c4

g

2mb
� · eB

+c5
a2�(4)

24mb
� c6

a
�
�(2)

�2

16n m2
b

. (4)

This action was originally introduced for heavy quarkonium, for which H0 is the leading-order term (order v2), and
the terms with coe�cients c1 through c4 in �H are of order v4 [64, 65]. The parameter n � 1 was introduced to
avoid numerical instabilities occurring at small amb [65]; here we set n = 2. The operators with coe�cients c5 and
c6 correct discretization errors associated with H0 and with the time derivative. We performed tadpole-improvement

Typical momenta of the bottom quark in a baryon is between 
0.5 and 1.5 GeV resulting velocities of v=0.1c

Non-relativistic approximation is applicable NRQCD

3

Set N3
s ⇥ Nt � am

(sea)
u,d am

(sea)
s a (fm) am

(val)
u,d am

(val)
s m

(vv)
⇡ (MeV) m

(vv)
⌘s (MeV) Nmeas

C104 243 ⇥ 64 2.13 0.01 0.04 0.1139(18) 0.01 0.04 419(7) 752(12) 2554

C14 243 ⇥ 64 2.13 0.005 0.04 0.1119(17) 0.001 0.04 245(4) 761(12) 2705

C24 243 ⇥ 64 2.13 0.005 0.04 0.1119(17) 0.002 0.04 270(4) 761(12) 2683

C54 243 ⇥ 64 2.13 0.005 0.04 0.1119(17) 0.005 0.04 336(5) 761(12) 2780

C53 243 ⇥ 64 2.13 0.005 0.04 0.1119(17) 0.005 0.03 336(5) 665(10) 1192

F23 323 ⇥ 64 2.25 0.004 0.03 0.0849(12) 0.002 0.03 227(3) 747(10) 1918

F43 323 ⇥ 64 2.25 0.004 0.03 0.0849(12) 0.004 0.03 295(4) 747(10) 1919

F63 323 ⇥ 64 2.25 0.006 0.03 0.0848(17) 0.006 0.03 352(7) 749(14) 2785

TABLE I. Properties of the gauge field ensembles [68] and of the light/strange quark propagators we computed on them. Here,

Ns and Nt are the numbers of lattice points in the spatial and temporal directions, � = 6/g2 is the gauge coupling, am
(sea)
u,d

and am
(sea)
s are the light and strange sea quark masses, and a is the lattice spacing (determined in Ref. [72]). The valence

quark masses used for the calculation of the light and strange quark propagators are denoted by am
(val)
u,d and am

(val)
s . The

corresponding valence pion and ⌘s masses are denoted as m
(vv)
⇡ and m

(vv)
⌘s . The ⌘s is an artificial ss̄ state that is defined

by treating the s and s̄ as di↵erent, but mass-degenerate flavors. This state is useful as an intermediate quantity to tune
the strange-quark mass [73]; its mass at the physical point has been computed precisely by the HPQCD collaboration and

is m
(phys)
⌘s = 689.3(1.2) MeV [74]. In the last column of the table, Nmeas is the number of pairs of light and strange quark

propagators computed in each data set.

B. Bottom quark action

The typical momentum of a bottom quark inside a hadron at rest is much smaller than the bottom-quark mass. For
hadrons containing only a single bottom quark and no charm quarks, one expects h|pb|i ⇠ ⇤ ⇠ 500 MeV [1, 75]. For
bottomonium and triply bottom baryons, one expects h|pb|i ⇠ mbv ⇠ 1.5 GeV, corresponding to v2 ⇠ 0.1 [64]. For
hadrons containing both bottom and charm quarks, the typical momentum of the b quark is between these extremes.
In all cases, the separation of scales, h|pb|i ⌧ mb, allows the treatment of the b quarks with nonrelativistic e↵ective
field theory. Here we used improved lattice NRQCD, which was introduced in Refs. [64, 65]. The b-quark is described
by a two-component spinor field  , with Euclidean lattice action

S = a3
X

x,t

 †(x, t)
⇥
 (x, t) � K(t)  (x, t � a)

⇤
, (1)

where

K(t) =

✓
1 � a �H|t

2

◆✓
1 � aH0|t

2n

◆n

U †
0 (t � a)

⇥
✓

1 � aH0|t�a

2n

◆n ✓
1 � a �H|t�a

2

◆
. (2)

In Eq. (2), U0(t � a) denotes a temporal gauge link, and H0 and �H are given by

H0 = ��(2)

2mb
, (3)

�H = �c1

�
�(2)

�2

8m3
b

+ c2
ig

8m2
b

⇣
r · eE � e

E · r
⌘

�c3
g

8m2
b

� ·
⇣
er ⇥ e

E � e
E ⇥ er

⌘
� c4

g

2mb
� · eB

+c5
a2�(4)

24mb
� c6

a
�
�(2)

�2

16n m2
b

. (4)

This action was originally introduced for heavy quarkonium, for which H0 is the leading-order term (order v2), and
the terms with coe�cients c1 through c4 in �H are of order v4 [64, 65]. The parameter n � 1 was introduced to
avoid numerical instabilities occurring at small amb [65]; here we set n = 2. The operators with coe�cients c5 and
c6 correct discretization errors associated with H0 and with the time derivative. We performed tadpole-improvement

O(v2)

O(v4)

tadpole improved tree level matching



Lattice calculation set up
• Domain wall fermions for the light quarks (RBC/UKQCD) 

• Relativistic heavy quark action for charm quark 

• NRQCD for botom quark 

• Two lattice spacings (0.11fm and 0.085fm determined from botomonium 
spectroscopy) 

• Pion mass range 220MeV - 420MeV 

• Extrapolate to the physical pion mass point 

• Single volume of about 2.7fm 

• Combined chiral and continuum extrapolations based on HBchiPT



Mass computation
• Use simplest non-relativistic interpolating fields for 

spin 1/2 , 3/2 baryons 

• Smeared quark sources (with several smearing 
widths) 

• Masses where estimated from fits to exponentials of  
the euclidean time dependence of two point 
functions
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FIG. 1. Matrix fit of the ⌦ccb two-point functions using Eq. (37). The data shown here are from the C54 set. The correlator
hO[c̃, c̃, b̃] O[c, c, b]i, which equals hO[c, c, b] O[c̃, c̃, b̃]i in the limit of infinite statistics, is not shown for clarity.

order to obtain (2 ⇥ 2) matrices. Here, five-dimensional scan means that we independently varied the values
of tmin for all four component correlators, but varied the values of tmax only by a common shift for all four
component correlators relative to the initial ranges, to keep the computational cost within bounds. The scans
were constrained by the requirement that each component correlator contributes at least 5 time slices (for the
coarse lattices) or 7 time slices (for fine lattice) to the fit. Of all the matrix fits performed with this scanning
procedure, only those with �2/d.o.f.  1 and Q � 0.5 were kept, and then the fit with the smallest uncertainty
for the energy was chosen.

• Method 4: This deterministic method performed fits only to the single correlator in which all quarks are smeared
at source and sink (this correlator is expected to have the least excited-state contamination). Two-dimensional
scans of tmin and tmax were performed in a wide range. As in Method 3, the scans were constrained by the
requirement that each component correlator contributes at least 5 time slices (for the coarse lattices) or 7 time
slices (for fine lattice) to the fit. Of all fits, those with �2/d.o.f.  1 and Q � 0.5 were kept, and then the fit
with the smallest uncertainty for the energy was chosen.

When applying each procedure, we enforced common fit ranges for hyperfine partners such as the ⌃b and ⌃⇤
b , to ensure

the optimal cancellation of statistical uncertainties and excited-state contamination in the small hyperfine splittings.
To illustrate how the results from methods 1 through 4 compare with each other, we show the ⌅⇤

cc energies in
Fig. 3. The di↵erent methods generally give quite consistent results, and we use the correlated weighted average
for the further analysis. The correlations between the energies from the di↵erent methods are taken into account
using statistical bootstrap; we perform the weighted averages for each bootstrap sample to obtain a new bootstrap
distribution for the average energy. The statistical uncertainty of the average energy is then obtained from the width
of this distribution. In some cases, the energies obtained using the di↵erent fit methods are not consistent with each
other (as can be seen for the C14 data set in Fig. 3), and we inflate the uncertainty of the average using a scale factor.
To this end, we compute the value of �2 for a constant fit to the four energies. If �2/(N � 1) > 1 (where N = 4 is
the number of data points), we inflate the uncertainty of the weighted average by a factor of [8]

S =
p

�2/(N � 1). (39)

The averaged baryon and quarkonium energies from all data sets are given in Tables VII and VIII, respectively.
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FIG. 2. E↵ective-energy plot for the 2 ⇥ 2 matrix of ⌦ccb two-point functions from the C54 set. The e↵ective energy for a
correlator C(t) is computed as aEe↵(t + a

2 ) = ln [C(t)/C(t + a)]. The lines indicate the time ranges and the energy obtained
from the fit shown in Fig. 1.

FIG. 3. ⌅⇤
cc energies obtained using the four di↵erent fit methods for each data set as explained in the main text. Also shown

are the method-averaged energies (correlations are taken into account). For the method-averaged energies, the outer error bars
include a scale factor in the cases where the average has �2/d.o.f. > 1 (here, for the C14 and C54 data sets).



Chiral and continuum 
extrapolations 
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{⇤c,⌃c,⌃
⇤
c} {⇤b,⌃b,⌃

⇤
b} {⌅c,⌅

0
c,⌅

⇤
c} {⌅b,⌅

0
b,⌅

⇤
b}

� (MeV) 199(18) 253(20) 139(11) 155(16)

�⇤ (MeV) 68(10) 22.7(4.8) 70.0(8.2) 28.8(3.1)

TABLE IX. Values of � and �⇤ (in MeV) used in the evaluation of the chiral loop integrals for the singly heavy baryons.

have the form

E(sub)
⇤Q

= E(sub,0) + d(vv)
⇡

[m(vv)
⇡ ]2

4⇡f
+ d(ss)

⇡

[m(ss)
⇡ ]2

4⇡f
+ M⇤Q + da a2⇤3 , (51)

E(sub)
⌃Q

= E(sub,0) + �(0) + c(vv)
⇡

[m(vv)
⇡ ]2

4⇡f
+ c(ss)

⇡

[m(ss)
⇡ ]2

4⇡f
+ M⌃Q + ca a2⇤3 , (52)

E(sub)
⌃⇤

Q
= E(sub,0) + �(0) + �(0)

⇤ + c(vv)
⇡

[m(vv)
⇡ ]2

4⇡f
+ c(ss)

⇡

[m(ss)
⇡ ]2

4⇡f
+ M⌃⇤

Q
+ ca a2⇤3 , (53)

where M⇤Q , M⌃Q , and M⌃⇤
Q

are the nonanalytic loop corrections [66], generalized here to include a nonzero hyperfine
splitting �⇤ between the ⌃⇤

Q and ⌃Q baryons:

M⇤Q = � g2
3

12⇡2f2

"
2F(m(vs)

⇡ , � + �⇤, µ) + F(m(vs)
⇡ , �, µ) + F(m(vv)

⇡ , � + �⇤, µ) +
1

2
F(m(vv)

⇡ , �, µ)

#
, (54)

M⌃Q =
g2
2

12⇡2f2

"
2

3
F(m(vs)

⇡ , �⇤, µ) +
1

3
F(m(vs)

⇡ , 0, µ)

#
+

g2
3

12⇡2f2

"
� F(m(vs)

⇡ , ��, µ) +
1

2
F(m(vv)

⇡ , ��, µ)

#
, (55)

M⌃⇤
Q

=
g2
2

12⇡2f2

"
1

6
F(m(vs)

⇡ , ��⇤, µ) +
5

6
F(m(vs)

⇡ , 0, µ)

#

+
g2
3

12⇡2f2

"
� F(m(vs)

⇡ , �� � �⇤, µ) +
1

2
F(m(vv)

⇡ , �� � �⇤, µ)

#
. (56)

In the unitary case m(vv)
⇡ = m(vs)

⇡ , these expressions reduce to the expressions obtained previously in Ref. [45]. The
chiral function F includes finite-volume corrections and is defined in Appendix A. We did not treat the ⌃Q � ⇤Q

and ⌃⇤
Q � ⌃Q splittings � and �⇤ used for the evaluation of the chiral functions as fit parameters. Instead, we

used the results of linear extrapolations to the chiral limit of the splittings determined for each data set (neglecting
lattice-spacing dependence). The values used are given in Table IX (for the very small ⌃⇤

b � ⌃b hyperfine splitting,
we used the average splitting instead of the extrapolated splitting). The scheme ambiguity for choosing � and �⇤ in
the evaluations of F only a↵ects the baryon masses at next-to-next-to-leading order, and is included in our estimates
of the systematic uncertainties in Sec. V. The chiral loop corrections also depend on the valence-valence pion masses

m(vv)
⇡ , which can be found in Table I, and on the valence-sea pion masses m(vs)

⇡ , which we set equal to

m(vs)
⇡ =

s
[m(vv)

⇡ ]2 + [m(ss)
⇡ ]2

2
. (57)

The sea-sea pion masses m(ss)
⇡ in Eq. (57) can also be read o↵ from Table I by taking the valence-valence pion masses

at am(val)
u,d = am(sea)

u,d . We chose the renormalization scale to be µ = 4⇡f , where f is the pion decay constant,

f = 132 MeV. (58)

The free parameters of the fit are E(sub,0), �(0), �(0)
⇤ , d(vv)

⇡ , d(ss)
⇡ , da, c(vv)

⇡ , c(ss)
⇡ , and ca. The “d” parameters describe

the analytic quark-mass and lattice-spacing dependence of the isosinget baryon ⇤Q, while the “c” parameters describe
these dependencies for both isotriplet baryons ⌃Q and ⌃⇤

Q, as predicted by the chiral Lagrangian [66]. The leading
lattice-spacing dependence is quadratic because we used a chirally symmetric domain-wall action for the light quarks
and O(a)-improved heavy-quark actions for the charm and bottom quarks (gluon discretization errors also start at
order a2). To make the “c” and “d” parameters dimensionless, we introduced appropriate powers of 4⇡f and

⇤ = 500 MeV. (59)

B. C. Tiburzi, “Baryon masses in partially quenched heavy hadron chiral perturbation theory,”

Phys. Rev. D 71 (2005)  034501, arXiv:hep-lat/0410033.  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FIG. 6. Chiral and continuum extrapolations for the {⇤Q,⌃Q,⌃⇤
Q} baryons. The curves show the fit functions in infinite

volume at m
(vv)
⇡ = m

(vs)
⇡ = m⇡, for the two di↵erent lattice spacing where we have data, and in the continuum limit. For the

continuum curves, the shaded bands indicate the 1� uncertainty. The lattice data have been shifted to infinite volume (see
Table XI for the values of the shifts); data points at the coarse lattice spacing are plotted with circles, and data points at the

fine lattice spacing are plotted with squares. The partially quenched data points, which have m
(vv)
⇡ < m

(vs)
⇡ , are included in

the plot with open symbols at m⇡ = m
(vv)
⇡ , even though the fit functions actually have slightly di↵erent values for these points.

The data sets with the lowest two pion masses (C14 and F23) are excluded here because our treatment of finite-volume e↵ects

in HH�PT breaks down below the ⌃(⇤)
Q ! ⇤Q ⇡ strong decay thresholds. The vertical lines indicate the physical value of the

pion mass.

FIG. 7. Imaginary parts of the {⇤Q,⌃Q,⌃⇤
Q} baryon energies in infinite volume, obtained from HH�PT. The imaginary parts

depend strongly on � and �+�⇤; the values used here are given Table IX.

functions become

E(sub)
⌅Q

= E(sub,0) + d(vv)
⇡

[m(vv)
⇡ ]2

4⇡f
+ d(vv)

⌘s

[m(vv)
⌘s ]2 � [m(phys)

⌘s ]2

4⇡f
+ d(ss)

⇡

[m(ss)
⇡ ]2

4⇡f
+ M⌅Q + da a2⇤3, (65)

E(sub)
⌅0

Q
= E(sub,0) + �(0) + c(vv)

⇡

[m(vv)
⇡ ]2

4⇡f
+ c(vv)

⌘s

[m(vv)
⌘s ]2 � [m(phys)

⌘s ]2

4⇡f
+ c(ss)

⇡

[m(ss)
⇡ ]2

4⇡f
+ M⌅0

Q
+ ca a2⇤3, (66)

E(sub)
⌅⇤

Q
= E(sub,0) + �(0) + �(0)

⇤ + c(vv)
⇡

[m(vv)
⇡ ]2

4⇡f
+ c(vv)

⌘s

[m(vv)
⌘s ]2 � [m(phys)

⌘s ]2

4⇡f
+ c(ss)

⇡

[m(ss)
⇡ ]2

4⇡f
+ M⌅⇤

Q
+ ca a2⇤3, (67)
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FIG. 15. Our results for the masses of charmed and/or bottom baryons, compared to the experimental results where available
[8, 10, 12]. The masses of baryons containing nb bottom quarks have been o↵set by �nb · (3000 MeV) to fit them into this plot.
Note that the uncertainties of our results for nearby states are highly correlated, and hyperfine splittings such as M⌦⇤

b
� M⌦b

can in fact be resolved with much smaller uncertainties than apparent from this figure (see Table XIX).

Results
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Note that the uncertainties of our results for nearby states are highly correlated, and hyperfine splittings such as M⌦⇤
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can in fact be resolved with much smaller uncertainties than apparent from this figure (see Table XIX).

New LHCb observation
LHCb PhysRevLett.114.062004
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FIG. 16. Comparison of lattice QCD results for the doubly and triply charmed baryon masses [41, 45, 46, 48, 50]; our results are
labeled as “Brown et al., 2014”. Only calculations with dynamical light quarks are included; for the doubly charmed baryons, we
further required that the calculations were performed at or extrapolated to the physical pion mass. Results without estimates
of systematic uncertainties are labeled “stat. only”. The lattice spacing values used in the calculations are also given; a = 0
indicates that the results have been extrapolated to the continuum limit. Reference [48] (Padmanath et al., 2013) gives results
for m⌦ccc � 3

2mJ/ for two di↵erent values of the Sheikholeslami-Wohlert coe�cient; here we took the result with cSW = 1.35
and added the experimental value of 3

2mJ/ [8]. In the plot of the doubly charmed baryons, the unconfirmed experimental
result for the ⌅+

cc mass from SELEX [13, 14] is shown with a dashed line. Note that the lattice QCD calculations consistently
predict a ⌅cc mass higher than the SELEX result.

Splitting This work (MeV) Splitting Experiment (MeV) Ratio

⌅⇤
cc � ⌅cc 82.8(9.2) D⇤0 � D0 142.12(7) 0.58(6)

⌦⇤
cc � ⌦cc 83.8(5.5) D⇤

s � Ds 143.8(4) 0.58(4)

⌅⇤
bb � ⌅bb 34.6(7.8) B⇤ � B 45.78(35) 0.76(17)

⌦⇤
bb � ⌦bb 35.7(5.7) B⇤

s � Bs 48.7(2.3) 0.73(12)

TABLE XX. Hyperfine splittings of doubly heavy baryons calculated in this work, compared to experimental results [8] for the
hyperfine splittings of mesons related by heavy quark-diquark symmetry. The ratio of these hyperfine splittings is expected to
approach the value 3/4 in the heavy-quark limit [4].

For the doubly bottom baryons, we compare our results to those from Ref. [52] in Fig. 17. Our results are consistent
with Ref. [52] but have larger statistical uncertainties. This may be because we performed our numerical calculations
with lighter (closer to physical) up and down-quark masses were the two-point correlation functions are exponentially
noisier [84], and because our continuum extrapolations amplified the statistical uncertainties. For the triply bottom
⌦bbb baryon, our present result is not completely independent from the result obtained by one of us in earlier work
[42], and we refer the reader to Ref. [42] for further discussions.

It is interesting to compare our lattice QCD results for the hyperfine splittings of the doubly heavy baryons to the
hyperfine splittings of the corresponding heavy-light mesons. This comparison is shown in Table XX, where we use
the experimental results of the heavy-light meson hyperfine splittings (preliminary lattice results for the heavy-light
meson hyperfine splittings from the same data sets as used for the baryons are consistent with the experimental
results). Heavy quark-diquark symmetry [3] predicts that the ratio of these hyperfine splittings approaches the value
3/4 in the heavy-quark limit [4]. We do indeed see some evidence that the ratios in the bottom sector are closer to
this value than the ratios in the charm sector.

No other dynamical lattice QCD calculations have been published so far for mixed charm-bottom baryons (results
of a quenched lattice calculation can be found in Ref. [31]). We therefore compare our lattice QCD results for the
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FIG. 17. Comparison of lattice QCD results for the doubly bottom baryon masses. The only other published unquenched
calculation is the one of Ref. [52]. Our results have larger statistical uncertainties, but our calculation was performed with
closer-to-physical pion masses and included a combined chiral and continuum extrapolation.

masses of these baryons to predictions from potential models, QCD sum rules, and other continuum-based approaches.
These comparisons are shown in Fig. 18 for the ⌅cb, ⌅0

cb, ⌅⇤
cb, ⌦cb, ⌦0

cb, and ⌦⇤
cb, and in Fig. 19 for the ⌦ccb, ⌦⇤

ccb,
⌦cbb, and ⌦⇤

cbb. It is evident that the mass predictions in the literature cover ranges far wider than our uncertainties.
We hope that our lattice QCD results provide a useful benchmark for future studies of these interesting systems.
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FIG. 18. Comparison of our lattice QCD results for the ⌅cb, ⌅
0
cb, ⌅

⇤
cb, ⌦cb, ⌦

0
cb, and ⌦⇤

cb baryon masses with estimates based
on continuum methods, including quark models and QCD sum rules [99–112]. From Refs. [100] (Silvestre-Brac, 1996) and [111]
(Ghalenovi et al., 2014), we show results for multiple di↵erent choices of the interquark potentials. Note that the bag-model
calculation of Ref. [103] (He et al., 2004) predicts m⌅⇤

cb
< m⌅0

cb
and m⌦⇤

cb
< m⌦0

cb
, and the QCD sum rule calculation of

Ref. [110] (Tang et al., 2012) predicts m⌅0
cb

< m⌅cb and m⌦0
cb

< m⌦cb , both rather unusual. The sum-rule calculation of

Ref. [108] (Zhang et al., 2008) gives extremely large hyperfine splittings m⌅⇤
cb

� m⌅0
cb

⇡ 1 GeV and m⌦⇤
cb

� m⌦0
cb

⇡ 0.5 GeV

[our results for the hyperfine splittings are m⌅⇤
cb

� m⌅0
cb

= 26.7(3.3)(8.4) MeV, m⌦⇤
cb

� m⌦0
cb

= 27.4(2.0)(6.7) MeV]; the ⌅⇤
cb

mass from Ref. [108] is beyond the upper limit of the plot.



Conclusions
• We have presented a comprehensive study of the 

baryon spectrum with charm and botom quarks for 
both spin 1/2 and spin 3/2 baryons 

• Our results are in good agreement with experiment 

• We make a large number of predictions states yet to 
be observed 

• LHCb has already confirmed one of our predictions 

• Hopefully more to come…


