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Two-body problem: low-order Dyson-Schwinger equations
22 Mesons
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Figure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as
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i

(l, k) , (3.5)

where the f
(j)

i

(l2, l ·k, k2, µ2) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

⌧
i

(l, k) = {1, /k, l/, [ l/, /k]} . (3.6)

The four longitudinal basis elements ⇠ kµ do not survive in the quark-DSE integral
because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants i�µ

and lµ are referred to as the vector and scalar components, respectively.
Using the STIs in Landau gauge, Z

1F

= Z
2

/Z̃
3

and Z
g

Z̃
3

Z
1/2

3

= 1, where Z̃
3

, Z
3

and Z
g

are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes
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where we defined the coe�cients ↵
(j)

i

as combinations of the gluon dressing function
and the vertex dressings:

↵
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(l2, l·k, k2) =
g2

4⇡

1
Z

2

Z̃
3

Z(k2, µ2) f
(j)

i

(l2, l·k, k2, µ2). (3.8)

They are independent of the renormalization point, as can be inferred from Z
g

Z̃
3

Z
1/2

3

=
1 and the renormalization-scale dependence of the quantities g ⇠ 1/Z

g

, Z ⇠ 1/Z
3

and
f

i

⇠ Z
2

/Z̃
3

.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has

2.3 Bound-state equations 15
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Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)

i

⌦ S�1

i

[65–67]. With the notation of (2.16), the kernel
eK(3) reads

eK(3) = eK
(3)

irr

+
3

X

i=1

eK
(2)

i

, (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P

2!�M

2������! N   
P 2 + M2

, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2

, J = 1/2 :
�i/P + M

P 2 + M2

= 2M
⇤

+

(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization
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where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P
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, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:
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For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization
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where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:
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For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization
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where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via
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where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:
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For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization
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q Gauge symmetry (vector current conservation): vector WGTI

Ward-Green-Takahashi identities: Lagrangian symmetries

q Chiral symmetry (axial-vector current conservation): axial-vector WGTI

q Lorentz symmetry + (axial-)vector current conservation: transverse WGTIs

He, PRD, 80, 016004 (2009)

The longitudinal and transverse WGTIs express 
the vertex divergences and curls, respectively. r · � r⇥ �
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Fermion--gauge-boson coupling: Solution of WGTIs
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They are a group of full-determinant linear equations. 
Thus, a unique solution for the vector vertex is exposed:

❖ The quark propagator contributes to the longitudinal and 
transverse parts. The DCSB-related terms are highlighted.

❖ The unknown high-order terms only contribute to the transverse part, i.e., the longitudinal part 
has been completely determined by the quark propagator.
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3. Solution of the coupled identities

One may now use any reliable means to solve the system of
coupled linear equations. Irrespective of the presence and form of
the functions {Xi, i = 1, . . . ,8}, part of the complete solution has

λ1(k, p) = ΣA
(
k2, p2), λ2(k, p) = #A

(
k2, p2),

λ3(k, p) = #B
(
k2, p2), λ4(k, p) = 0, (16)

where (x = k2, y = p2)

Σφ(x, y) = 1
2

[
φ(x) + φ(y)

]
, #φ(x, y) = φ(x) − φ(y)

x − y
. (17)

Namely, a necessary consequence of solving Eqs. (1), (12), (13), is
the identification of Γ L

µ(k, p) with the result derived in Ref. [4];
i.e., the Ball–Chiu Ansatz. The system of equations is linear, so the
solution for Γ L

µ(k, p) is unique. Note that we made no attempt to
impose a particular kinematic structure on the solution. Irrespec-
tive of the tensor basis chosen, and we used a variety of forms,
not just those in Eqs. (A.1)–(A.9), this part of the solution is free of
kinematic singularities. The functional form of λ3(k, p) signals that
the coupling of a dressed-fermion to a gauge boson is necessarily
influenced heavily by DCSB.

The eight functions in Eq. (8) are also completely specified.
Their form depends on {Xi, i = 1, . . . ,8}; e.g., the simplest is

τ1(k, p) = 1
2

X1(k, p)

(k2 − p2)((k · p)2 − k2 p2)
. (18)

The expressions for {τ j, j = 2,4,6,7} are more complicated but,
in common with τ1, they do not explicitly involve the scalar func-
tions (A, B) which define the dressed-fermion propagator. This is
the material point. It means that any and all effects of (A, B) in
{τ j, j = 1,2,4,6,7} are only expressed implicitly through a solu-
tion of the vertex Bethe–Salpeter equation. (N.B. Our subsequent
discussion is independent of all other details about the forms of
{τ j, j = 2,4,6,7}.)

In contrast, the expressions for {τ j, j = 3,5,8} explicitly in-
volve combinations of A(k2), A(p2), B(k2), B(p2) and {Xi, i =
1, . . . ,8}. If one supposes that {Xi ≡ 0, i = 1, . . . ,8}, then simple
results are obtained:

2τ3(k, p) = #A
(
k2, p2), (19)

τ5(k, p) = −#B
(
k2, p2), (20)

τ8(k, p) = −#A
(
k2, p2). (21)

The following features of the transverse part of the solution to
Eqs. (1), (12), (13) are particularly noteworthy.

A T 3
µ(k, p) term generally appears in the solution and, with

{Xi ≡ 0, i = 1, . . . ,8}, its coefficient is (1/2)#A(k2, p2), Eq. (19).
The functional form is a prediction of the transverse WGT identity
because, apart from our choice of tensor bases in Eqs. (A.1)–(A.9),
we implemented no other constraints. Based upon considerations
of multiplicative renormalisability and one-loop perturbation the-
ory, a vertex Ansatz was proposed in Ref. [24]. It involves a
T 3
µ(k, p) term whose coefficient is a3#A(k2, p2), with a3 + a6 =

1/2, where a6 is associated with the T 6
µ(k, p) term in Eq. (8). The

agreement between the coefficients’ functional forms is remark-
able. The choice (a3 = 0, a6 = 1/2) produces the Curtis–Pennington
Ansatz [33]. The system of equations we have solved prefers the al-
ternative (a3 = 1/2, a6 = 0). Corrections to Eq. (19) involve {Xi, i =
2,3,5}. They will depend on the gauge parameter and can affect
the balance between a3 and a6 on that domain within which it is
meaningful to think in these terms. Curiously, then, the existence

and strength of a Curtis–Pennington-like term in the vertex is de-
termined by the nonlocal quantity V A

µν(k, p) in Eq. (5).
The solution contains an explicit anomalous magnetic moment

term for the dressed-fermion; viz., a T 5
µ(k, p) term. We find that

its appearance is a straightforward consequence of Lagrangian-
based symmetries but its necessary existence has been argued by
other authors using very different reasoning [34–37]. With {Xi ≡ 0,
i = 1, . . . ,8}, the coefficient of T 5

µ(k, p) is “= −1 × #B(k2, p2);”
i.e., Eq. (20). We reiterate that the functional form is a predic-
tion. It signals the intimate connection of this term with DCSB.
In Ref. [24], following a line of argument based upon multiplica-
tive renormalisability and leading-order perturbation theory, a ver-
tex Ansatz was proposed in which the coefficient of this term is
“−4/3 × #B(k2, p2).” The latter analysis was performed in Landau
gauge whereas, herein, we have not needed to specify a gauge-
parameter value. The perfect agreement between the functional
forms is striking and the near agreement between the coefficients
is interesting. Corrections to Eq. (20) involve {Xi, i = 1,4,6}. They
will depend on the gauge parameter, and on that domain within
which it is meaningful to characterise the vertex Ansatz in the
manner of Ref. [24] they may be seen as modifications to the
coefficient of T 5

µ(k, p) therein. Thus, the strength of the explicit
anomalous magnetic moment term in the vertex is finally deter-
mined by the nonlocal quantity V A

µν(k, p) in Eq. (5).
It was explained in Ref. [37] that in the presence of an ex-

plicit anomalous magnetic moment term, agreement with per-
turbation theory requires the appearance of τ8(k, p) ≠ 0. (N.B.
τ8 herein corresponds to τ4 in the notation of Refs. [37,38].)
This was confirmed in Ref. [24], wherein the analysis yields a
vertex Ansatz that includes τ8 = a8#A(k2, p2), whose functional
form is precisely the same as that predicted herein, Eq. (21). We
find a8 = −1. The asymptotic analysis in Ref. [24] indicates that
1 + a2 + 2(a3 − a6 + a8) = 0, where a2 is associated with the τ2
term. If {Xi ≡ 0, i = 1, . . . ,8}, then (a2 = 0, a3 = 1/2, a6 = 0) and
hence the solution to Eqs. (1), (12), (13) is consistent with the
known constraint. Corrections to Eq. (21) involve {Xi, i = 2,3,8}.
They will depend on the gauge parameter and can modify the co-
efficient in Eq. (21) on that domain within which it is meaningful
to describe the vertex Ansatz in this way.

The preceding considerations lead us to a minimal Ansatz for
the vertex that describes the interaction between an Abelian gauge
boson and a dressed-fermion:

Γ M
µ (k, p) = Γ BC

µ (k, p) + Γ TM
µ (k, p), (22)

where Γ BC
µ (k, p) is constructed from Eqs. (7), (16), (A.1) and

Γ TM
µ (k, p) is built from Eqs. (8), (19)–(21), (A.2)–(A.9) plus the

results {τ j ≡ 0, j = 1,2,4,6,7}. We describe the Ansatz as min-
imal because it is the simplest structure that is simultaneously
compatible with the constraints expressed in Ref. [24] and all
known Ward–Green–Takahashi identities, both longitudinal and
transverse.

Employed to express the electromagnetic coupling of a dressed-
fermion described by a spinor that satisfies

ū(p,M )(iγ · p + M ) = 0 = (iγ · p + M )u(p,M ), (23)

the vertex produces a renormalisation-point-invariant anomalous
magnetic moment [24]

κ = 2M
2M δA − 2δB

σA − 2M 2δA + 2M δB
= −2MδM

1 + 2MδM
, (24)

where σA = ΣA(M 2,M 2), δA,B,M = #A,B,M(M 2,M 2). In the chi-
ral limit and absent DCSB, M = 0 and hence κ vanishes. In con-
trast, using the DCSB-improved gap equation kernel in Ref. [39],
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3. Solution of the coupled identities
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where (x = k2, y = p2)

Σφ(x, y) = 1
2

[
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Figure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as

�µ(l, k, µ) =
4

X

i=1

⇣

f
(1)

i

i�µ + f
(2)

i

lµ + f
(3)

i

kµ

⌘

⌧
i

(l, k) , (3.5)

where the f
(j)

i

(l2, l ·k, k2, µ2) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

⌧
i

(l, k) = {1, /k, l/, [ l/, /k]} . (3.6)

The four longitudinal basis elements ⇠ kµ do not survive in the quark-DSE integral
because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants i�µ

and lµ are referred to as the vector and scalar components, respectively.
Using the STIs in Landau gauge, Z

1F

= Z
2

/Z̃
3

and Z
g

Z̃
3

Z
1/2

3

= 1, where Z̃
3

, Z
3

and Z
g

are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes

⌃(p, µ,⇤) = �16
3

Z2

2

⇤

Z

q

i�µS(q, µ)
Tµ⌫

k

k2

4

X

i=1

⇣

↵
(1)

i

i�⌫ + ↵
(2)

i

l⌫
⌘

⌧
i

(l, k), (3.7)

where we defined the coe�cients ↵
(j)

i

as combinations of the gluon dressing function
and the vertex dressings:

↵
(j)

i

(l2, l·k, k2) =
g2

4⇡

1
Z

2

Z̃
3

Z(k2, µ2) f
(j)

i

(l2, l·k, k2, µ2). (3.8)

They are independent of the renormalization point, as can be inferred from Z
g

Z̃
3

Z
1/2

3

=
1 and the renormalization-scale dependence of the quantities g ⇠ 1/Z

g

, Z ⇠ 1/Z
3

and
f

i

⇠ Z
2

/Z̃
3

.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has

=
�⌃(x, y)

�S(x0
, y

0)

2.3 Bound-state equations 15
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Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)

i

⌦ S�1

i

[65–67]. With the notation of (2.16), the kernel
eK(3) reads

eK(3) = eK
(3)

irr

+
3

X

i=1

eK
(2)

i

, (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P

2!�M

2������! N   
P 2 + M2

, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2

, J = 1/2 :
�i/P + M

P 2 + M2

= 2M
⇤

+

(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization

Scattering kernel: Beyond rainbow-ladder approximation
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(2)

i

⌦ S�1

i

[65–67]. With the notation of (2.16), the kernel
eK(3) reads

eK(3) = eK
(3)

irr

+
3

X

i=1

eK
(2)

i

, (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P

2!�M

2������! N   
P 2 + M2

, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2

, J = 1/2 :
�i/P + M

P 2 + M2

= 2M
⇤

+

(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization
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I. INTRODUCTION

In order to solve QCD, we try to study its equations of motion, i.e., Dyson-Schwinger equations (DSEs). To make
the DSEs solvable, the simplest approximation, i.e., the so call rainbow-ladder (RL) truncation, has been used for
many years. It has been always a significant topic in the DSE community to go beyond the RL approximation.

Traditionally, the workflow is to construct the gap equation first and then the BSE. The logic is very natural because
the BSE is more complicated than the gap equation, moreover, the former needs the solution of the latter as an input.
Although one can make the BSE and the gap equation to preserve the WGTIs self-consistently, the scheme is usually
not unique. That is to say, for a specified gap equation, one can construct infinitely many BSEs without the WGTIs
violated, however, can not prove their equivalence or inequivalence. For a specified form of quark self-energy,

⌃(k) = , (1)

it is usually complicated to write down the BS kernel except that for the bare quark-gluon vertex we have

K(k±, q±) = , (2)

which is the leading approximation of the quark–anti-quark scattering kernel. For a given self-energy form, to construct
a scattering kernel is a longstanding problem.

Here I propose an approach which deals with the problem in an opposite direction. Let us assume that the kernel
has a next order contribution, e.g., the crossing term

K(k±, q±) = + , (3)

or even more complicated terms

K(k±, q±) = + + + , (4)

and ask a question: What kind of the quark self-energy can result in such contributions? It is actually quite easy to
answer this question. Since we have the WTIs which connect the quark propagator with the solutions of the BSE,
we can thus express the quark self-energy as a form depending on the kernel. Namely, the logic here is closed but
reversed compared to the traditional scheme: We specify the kernel first and sketch the quark self-energy then.

In other words, we write down the BSE with a specified kernel from any consideration which may be directly related
to meson properties. In the BSE, there are two key elements: the BS kernel and the quark propagator. The former
generally depends on unknown the latter. Thus, the BSE is incomplete. However, turning to the WTIs, the solutions
of the BSE can be connected with the quark propagator without any ambiguousness. Namely, the quark propagator
can be solved self-consistently. In the whole procedure, the BS kernel is the only object which needs to be specified.

II. DERIVATION

In general, the inhomogeneous BSE can be written as

�H
↵�(k, P ) = �

H
↵� +

Z

q

K(k±, q±)↵↵0,�0� [S(q+)�
H(q, P )S(q�)]↵0�0

. (5)

Once the kernel and the quark propagator are known, the vertex can be solved. Assuming that the kernel is written
as a form like Eqs. (2)-(4), etc., we find that the BSE can be specified by the quark propagator (here the gluon
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propagator is given by models). Namely, besides the gluon model, the quark propagator is the only unknown object
in the BSE. If one has the quark propagator in hand, the solution of the BSE is straightforward. Or if one can express
the former in terms of the latter, the BSE becomes closed and solvable.

Recalling the vector and axial-vector WGTIs, we have

iPµ�µ(k, P ) = S

�1(k+)� S

�1(k�), (6)

Pµ�5µ(k, P ) + 2mi�5(k, P ) = S

�1(k+)i�5 + i�5S
�1(k�). (7)

As we expected, their left hands are the solutions of the BSE and right hands are the quark propagator. Thus, they
are exactly what we need to close the BSE. In the zero momentum limit, i.e., |P | ! 0 and P̂

2 = 1, we can simply the
WGTIs as

iP̂µ�µ(k, 0) = P̂µ
@S

�1(k)

@kµ
, (8)

2m�5(k, 0) = S

�1(k)�5 + �5S
�1(k), (9)

which express the quark propagator in terms of the projected vector and pseudo-scalar vertices.
Inserting the above WGTIs into the BSE, we express the quark gap equation as


P̂µ

@S

�1(k)

@kµ

�

↵�

= [i /̂P ]↵� �
Z

q

K(k, q)↵↵0,�0�


P̂µ

@S(q)

@qµ

�

↵0�0
, (10)

⇥
S

�1(k)�5 + �5S
�1(k)

⇤
↵�

= [2m�5]↵� +

Z

q

K(k, q)↵↵0,�0� [S(q)�5 + �5S(q)]↵0�0 , (11)

where we do not explicitly need to specify the quark-gluon vertex appearing in the quark self-energy. Note that the
quark di↵erential terms appear as the Ball-Chiu vertex does. The quark propagator, i.e., two-point Green function,
only depends on a single momentum (k). However, in the above equations, there are two momenta involved (k and
P̂ ) where P̂ projects a vector equation onto a scalar component. That is to say, we have a degree of freedom for P̂ to
specify the scalar equation. Actually, di↵erent choice of P̂ corresponds to di↵erent frame of reference. As we will see,
we can have a simple choice of P̂ which is explicitly compatible with the conventional rainbow-ladder approximation.

Let P̂ = k̂, we obtain

kµ
@S

�1(k)

@kµ
= i

/

kA(k2) + 2k2

i

/

k

@A(k2)

@k

2
+

@B(k2)

@k

2

�
. (12)

Projecting the vector part of the quark propagator out by tracing the above equation with �i

/

k/4k2, we have (K =
K(k, q))

A(k2) = 1� 2k2
@A(k2)

@k

2
+

1

4

Z

q


ikµ/k

k

2

�

�↵

K↵↵0,�0�


@S(q)

@qµ

�

↵0�0
. (13)

Similarly, for the scalar part, we have

S

�1(k)�5 + �5S
�1(k) = 2�5B(k2), and S(q)�5 + �5S(q) = 2�5�B(q

2). (14)

Inserting them into the BSE, we obtain the following equation

B(k2) = m+
1

4

Z

q

[�5]�↵ K↵↵0,�0�

⇥
�5�B(q

2)
⇤
↵0�0 . (15)

In summary, the new version of the gap equation can be explicitly written as

8
>><

>>:

@|k|A(k2)

@|k| = 1 +
1

4

Z

q

h
k

k
µ

i

�↵
K↵↵0,�0�


@S(q)

@qµ

�

↵0�0
,

B(k2) = m+
1

4

Z

q

[�5]�↵ K↵↵0,�0�

⇥
�5�B(q

2)
⇤
↵0�0 ,

(16)

where |k| =
p
k

2, kkµ = ikµ/k/k
2. If formally decompose the kernel as

K↵↵0,�0� = [Kx
L]↵↵0 [Kx

R]�0� , (17)
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The quark equation is specified by the scattering kernel:

⌃(x, y) =

22 Mesons

-1
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-1 +
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ݍ

݇

Figure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as

�µ(l, k, µ) =
4

X

i=1

⇣

f
(1)

i

i�µ + f
(2)

i

lµ + f
(3)

i

kµ

⌘

⌧
i

(l, k) , (3.5)

where the f
(j)

i

(l2, l ·k, k2, µ2) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

⌧
i

(l, k) = {1, /k, l/, [ l/, /k]} . (3.6)

The four longitudinal basis elements ⇠ kµ do not survive in the quark-DSE integral
because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants i�µ

and lµ are referred to as the vector and scalar components, respectively.
Using the STIs in Landau gauge, Z

1F

= Z
2

/Z̃
3

and Z
g

Z̃
3

Z
1/2

3

= 1, where Z̃
3

, Z
3

and Z
g

are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes

⌃(p, µ,⇤) = �16
3

Z2

2

⇤

Z

q

i�µS(q, µ)
Tµ⌫

k

k2

4

X

i=1

⇣

↵
(1)

i

i�⌫ + ↵
(2)

i

l⌫
⌘

⌧
i

(l, k), (3.7)

where we defined the coe�cients ↵
(j)

i

as combinations of the gluon dressing function
and the vertex dressings:

↵
(j)

i

(l2, l·k, k2) =
g2

4⇡

1
Z

2

Z̃
3

Z(k2, µ2) f
(j)

i

(l2, l·k, k2, µ2). (3.8)

They are independent of the renormalization point, as can be inferred from Z
g

Z̃
3

Z
1/2

3

=
1 and the renormalization-scale dependence of the quantities g ⇠ 1/Z

g

, Z ⇠ 1/Z
3

and
f

i

⇠ Z
2

/Z̃
3

.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has

=
�⌃(x, y)

�S(x0
, y

0)

2.3 Bound-state equations 15
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Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)

i

⌦ S�1

i

[65–67]. With the notation of (2.16), the kernel
eK(3) reads

eK(3) = eK
(3)

irr

+
3

X

i=1

eK
(2)

i

, (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P

2!�M

2������! N   
P 2 + M2

, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2

, J = 1/2 :
�i/P + M

P 2 + M2

= 2M
⇤

+

(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization

As an example, the kernel is written as two parts (anomalous magnetic moment):

Scattering kernel: Beyond rainbow-ladder approximation

2

I. INTRODUCTION

In order to solve QCD, we try to study its equations of motion, i.e., Dyson-Schwinger equations (DSEs). To make
the DSEs solvable, the simplest approximation, i.e., the so call rainbow-ladder (RL) truncation, has been used for
many years. It has been always a significant topic in the DSE community to go beyond the RL approximation.
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propagator is given by models). Namely, besides the gluon model, the quark propagator is the only unknown object
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where we do not explicitly need to specify the quark-gluon vertex appearing in the quark self-energy. Note that the
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only depends on a single momentum (k). However, in the above equations, there are two momenta involved (k and
P̂ ) where P̂ projects a vector equation onto a scalar component. That is to say, we have a degree of freedom for P̂ to
specify the scalar equation. Actually, di↵erent choice of P̂ corresponds to di↵erent frame of reference. As we will see,
we can have a simple choice of P̂ which is explicitly compatible with the conventional rainbow-ladder approximation.

Let P̂ = k̂, we obtain

kµ
@S

�1(k)

@kµ
= i

/

kA(k2) + 2k2

i

/

k

@A(k2)

@k

2
+

@B(k2)

@k

2

�
. (12)

Projecting the vector part of the quark propagator out by tracing the above equation with �i

/

k/4k2, we have (K =
K(k, q))

A(k2) = 1� 2k2
@A(k2)

@k

2
+

1

4

Z

q


ikµ/k

k

2

�

�↵

K↵↵0,�0�


@S(q)

@qµ

�

↵0�0
. (13)

Similarly, for the scalar part, we have

S

�1(k)�5 + �5S
�1(k) = 2�5B(k2), and S(q)�5 + �5S(q) = 2�5�B(q

2). (14)

Inserting them into the BSE, we obtain the following equation

B(k2) = m+
1

4

Z

q

[�5]�↵ K↵↵0,�0�

⇥
�5�B(q

2)
⇤
↵0�0 . (15)

In summary, the new version of the gap equation can be explicitly written as

8
>><

>>:

@|k|A(k2)

@|k| = 1 +
1

4

Z

q

h
k

k
µ

i

�↵
K↵↵0,�0�


@S(q)

@qµ

�

↵0�0
,

B(k2) = m+
1

4

Z

q

[�5]�↵ K↵↵0,�0�

⇥
�5�B(q

2)
⇤
↵0�0 ,

(16)

where |k| =
p
k

2, kkµ = ikµ/k/k
2. If formally decompose the kernel as

K↵↵0,�0� = [Kx
L]↵↵0 [Kx

R]�0� , (17)

3

propagator is given by models). Namely, besides the gluon model, the quark propagator is the only unknown object
in the BSE. If one has the quark propagator in hand, the solution of the BSE is straightforward. Or if one can express
the former in terms of the latter, the BSE becomes closed and solvable.

Recalling the vector and axial-vector WGTIs, we have

iPµ�µ(k, P ) = S

�1(k+)� S

�1(k�), (6)

Pµ�5µ(k, P ) + 2mi�5(k, P ) = S

�1(k+)i�5 + i�5S
�1(k�). (7)

As we expected, their left hands are the solutions of the BSE and right hands are the quark propagator. Thus, they
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WGTIs as
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which express the quark propagator in terms of the projected vector and pseudo-scalar vertices.
Inserting the above WGTIs into the BSE, we express the quark gap equation as
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where we do not explicitly need to specify the quark-gluon vertex appearing in the quark self-energy. Note that the
quark di↵erential terms appear as the Ball-Chiu vertex does. The quark propagator, i.e., two-point Green function,
only depends on a single momentum (k). However, in the above equations, there are two momenta involved (k and
P̂ ) where P̂ projects a vector equation onto a scalar component. That is to say, we have a degree of freedom for P̂ to
specify the scalar equation. Actually, di↵erent choice of P̂ corresponds to di↵erent frame of reference. As we will see,
we can have a simple choice of P̂ which is explicitly compatible with the conventional rainbow-ladder approximation.

Let P̂ = k̂, we obtain
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Projecting the vector part of the quark propagator out by tracing the above equation with �i
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k/4k2, we have (K =
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Similarly, for the scalar part, we have
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�1(k)�5 + �5S
�1(k) = 2�5B(k2), and S(q)�5 + �5S(q) = 2�5�B(q

2). (14)

Inserting them into the BSE, we obtain the following equation
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where |k| =
p
k

2, kkµ = ikµ/k/k
2. If formally decompose the kernel as

K↵↵0,�0� = [Kx
L]↵↵0 [Kx

R]�0� , (17)

S(p) =
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Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)

i

⌦ S�1

i

[65–67]. With the notation of (2.16), the kernel
eK(3) reads

eK(3) = eK
(3)

irr

+
3

X

i=1

eK
(2)

i

, (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P

2!�M

2������! N   
P 2 + M2

, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2

, J = 1/2 :
�i/P + M

P 2 + M2

= 2M
⇤

+

(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization

= + q
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The quark equation is specified by the scattering kernel:

⌃(x, y) =

22 Mesons
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Figure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as

�µ(l, k, µ) =
4

X

i=1

⇣

f
(1)

i

i�µ + f
(2)

i

lµ + f
(3)

i

kµ

⌘

⌧
i

(l, k) , (3.5)

where the f
(j)

i

(l2, l ·k, k2, µ2) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

⌧
i

(l, k) = {1, /k, l/, [ l/, /k]} . (3.6)

The four longitudinal basis elements ⇠ kµ do not survive in the quark-DSE integral
because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants i�µ

and lµ are referred to as the vector and scalar components, respectively.
Using the STIs in Landau gauge, Z

1F

= Z
2

/Z̃
3

and Z
g

Z̃
3

Z
1/2

3

= 1, where Z̃
3

, Z
3

and Z
g

are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes

⌃(p, µ,⇤) = �16
3

Z2

2

⇤

Z

q

i�µS(q, µ)
Tµ⌫

k

k2

4

X

i=1

⇣

↵
(1)

i

i�⌫ + ↵
(2)

i

l⌫
⌘

⌧
i

(l, k), (3.7)

where we defined the coe�cients ↵
(j)

i

as combinations of the gluon dressing function
and the vertex dressings:

↵
(j)

i

(l2, l·k, k2) =
g2

4⇡

1
Z

2

Z̃
3

Z(k2, µ2) f
(j)

i

(l2, l·k, k2, µ2). (3.8)

They are independent of the renormalization point, as can be inferred from Z
g

Z̃
3

Z
1/2

3

=
1 and the renormalization-scale dependence of the quantities g ⇠ 1/Z

g

, Z ⇠ 1/Z
3

and
f

i

⇠ Z
2

/Z̃
3

.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has

=
�⌃(x, y)

�S(x0
, y

0)
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where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via
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where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:
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= 2M
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For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization

As an example, the kernel is written as two parts (anomalous magnetic moment):

Scattering kernel: Beyond rainbow-ladder approximation

2

I. INTRODUCTION

In order to solve QCD, we try to study its equations of motion, i.e., Dyson-Schwinger equations (DSEs). To make
the DSEs solvable, the simplest approximation, i.e., the so call rainbow-ladder (RL) truncation, has been used for
many years. It has been always a significant topic in the DSE community to go beyond the RL approximation.

Traditionally, the workflow is to construct the gap equation first and then the BSE. The logic is very natural because
the BSE is more complicated than the gap equation, moreover, the former needs the solution of the latter as an input.
Although one can make the BSE and the gap equation to preserve the WGTIs self-consistently, the scheme is usually
not unique. That is to say, for a specified gap equation, one can construct infinitely many BSEs without the WGTIs
violated, however, can not prove their equivalence or inequivalence. For a specified form of quark self-energy,

⌃(k) = , (1)

it is usually complicated to write down the BS kernel except that for the bare quark-gluon vertex we have

K(k±, q±) = , (2)

which is the leading approximation of the quark–anti-quark scattering kernel. For a given self-energy form, to construct
a scattering kernel is a longstanding problem.

Here I propose an approach which deals with the problem in an opposite direction. Let us assume that the kernel
has a next order contribution, e.g., the crossing term

K(k±, q±) = + , (3)

or even more complicated terms

K(k±, q±) = + + + , (4)

and ask a question: What kind of the quark self-energy can result in such contributions? It is actually quite easy to
answer this question. Since we have the WTIs which connect the quark propagator with the solutions of the BSE,
we can thus express the quark self-energy as a form depending on the kernel. Namely, the logic here is closed but
reversed compared to the traditional scheme: We specify the kernel first and sketch the quark self-energy then.

In other words, we write down the BSE with a specified kernel from any consideration which may be directly related
to meson properties. In the BSE, there are two key elements: the BS kernel and the quark propagator. The former
generally depends on unknown the latter. Thus, the BSE is incomplete. However, turning to the WTIs, the solutions
of the BSE can be connected with the quark propagator without any ambiguousness. Namely, the quark propagator
can be solved self-consistently. In the whole procedure, the BS kernel is the only object which needs to be specified.

II. DERIVATION

In general, the inhomogeneous BSE can be written as

�H
↵�(k, P ) = �

H
↵� +

Z

q

K(k±, q±)↵↵0,�0� [S(q+)�
H(q, P )S(q�)]↵0�0

. (5)

Once the kernel and the quark propagator are known, the vertex can be solved. Assuming that the kernel is written
as a form like Eqs. (2)-(4), etc., we find that the BSE can be specified by the quark propagator (here the gluon

3

propagator is given by models). Namely, besides the gluon model, the quark propagator is the only unknown object
in the BSE. If one has the quark propagator in hand, the solution of the BSE is straightforward. Or if one can express
the former in terms of the latter, the BSE becomes closed and solvable.

Recalling the vector and axial-vector WGTIs, we have

iPµ�µ(k, P ) = S

�1(k+)� S

�1(k�), (6)

Pµ�5µ(k, P ) + 2mi�5(k, P ) = S

�1(k+)i�5 + i�5S
�1(k�). (7)

As we expected, their left hands are the solutions of the BSE and right hands are the quark propagator. Thus, they
are exactly what we need to close the BSE. In the zero momentum limit, i.e., |P | ! 0 and P̂

2 = 1, we can simply the
WGTIs as

iP̂µ�µ(k, 0) = P̂µ
@S

�1(k)

@kµ
, (8)

2m�5(k, 0) = S

�1(k)�5 + �5S
�1(k), (9)

which express the quark propagator in terms of the projected vector and pseudo-scalar vertices.
Inserting the above WGTIs into the BSE, we express the quark gap equation as


P̂µ

@S

�1(k)

@kµ

�

↵�

= [i /̂P ]↵� �
Z

q

K(k, q)↵↵0,�0�


P̂µ

@S(q)

@qµ

�

↵0�0
, (10)

⇥
S

�1(k)�5 + �5S
�1(k)

⇤
↵�

= [2m�5]↵� +

Z

q

K(k, q)↵↵0,�0� [S(q)�5 + �5S(q)]↵0�0 , (11)

where we do not explicitly need to specify the quark-gluon vertex appearing in the quark self-energy. Note that the
quark di↵erential terms appear as the Ball-Chiu vertex does. The quark propagator, i.e., two-point Green function,
only depends on a single momentum (k). However, in the above equations, there are two momenta involved (k and
P̂ ) where P̂ projects a vector equation onto a scalar component. That is to say, we have a degree of freedom for P̂ to
specify the scalar equation. Actually, di↵erent choice of P̂ corresponds to di↵erent frame of reference. As we will see,
we can have a simple choice of P̂ which is explicitly compatible with the conventional rainbow-ladder approximation.

Let P̂ = k̂, we obtain

kµ
@S

�1(k)

@kµ
= i

/

kA(k2) + 2k2

i

/

k

@A(k2)

@k

2
+

@B(k2)

@k

2

�
. (12)

Projecting the vector part of the quark propagator out by tracing the above equation with �i

/

k/4k2, we have (K =
K(k, q))

A(k2) = 1� 2k2
@A(k2)

@k

2
+

1

4

Z

q


ikµ/k

k

2

�

�↵

K↵↵0,�0�


@S(q)

@qµ

�

↵0�0
. (13)

Similarly, for the scalar part, we have

S

�1(k)�5 + �5S
�1(k) = 2�5B(k2), and S(q)�5 + �5S(q) = 2�5�B(q

2). (14)

Inserting them into the BSE, we obtain the following equation

B(k2) = m+
1

4

Z

q

[�5]�↵ K↵↵0,�0�

⇥
�5�B(q

2)
⇤
↵0�0 . (15)

In summary, the new version of the gap equation can be explicitly written as

8
>><

>>:
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,

B(k2) = m+
1

4
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[�5]�↵ K↵↵0,�0�
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�5�B(q

2)
⇤
↵0�0 ,

(16)

where |k| =
p
k

2, kkµ = ikµ/k/k
2. If formally decompose the kernel as

K↵↵0,�0� = [Kx
L]↵↵0 [Kx

R]�0� , (17)
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quark di↵erential terms appear as the Ball-Chiu vertex does. The quark propagator, i.e., two-point Green function,
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Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)

i

⌦ S�1

i

[65–67]. With the notation of (2.16), the kernel
eK(3) reads

eK(3) = eK
(3)

irr

+
3

X

i=1

eK
(2)

i

, (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T (n)

P

2!�M

2������! N   
P 2 + M2

, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T (n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2

, J = 1/2 :
�i/P + M

P 2 + M2

= 2M
⇤

+

(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤

+

(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P 2 = �M2, cf.
Fig. 2.2. An examination of the relation T 0 = �T (T�1)0 T at the bound-state pole,
where 0 denotes the derivative d/dP 2, yields the associated canonical normalization

= + q
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Meson spectrum v.s. AMM strength: mass < 2 GeV

	  When	  the	  AMM	  is	  negative,	  masses	  
of	   all	   states	   are	   squeezed	   together	  
with	  increasing	  the	  strength.

	   When	   the	   AMM	   is	   positive,	   with	  
increasing	   the	   strength,	   the	   rho-‐a1	  
and	   rho-‐rho’	   mass	   splittings	   are	  
enhanced.

	   When	   the	   AMM	   is	   positive,	   with	  
increasing	   the	   strength,	   the	   pi’-‐rho’	  
mass	  ordering	  is	  reversed.
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Summary

	  A	  novel	  structure	  for	  the	  fermion—gauge-‐boson	  vertex	  is	  exposed	  by	  solving	  WGTIs

	  A	  new	  method	  beyond	  rainbow-‐ladder	  approximation	  is	  proposed	  based	  on	  WGTIs

	  A	  demonstration	  applying	  the	  new	  method	  to	  light	  meson	  spectrum	  is	  presented.

Outlook

	  The	  WGTIs	  exposes	  more	  structures	  of	  the	  vertex	  and	  thus	  provides	  more	  information	  
for	  truncating	  the	  DSEs.

	  Using	  more	  sophisticated	  scattering	  kernels,	  the	  new	  method	  is	  potentially	  useful	  for	  
hadron	  phenomenology.
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Appendix 1: modeling gluon propagator 

!  Using Oliveira’s scheme,  we can 
readily parameterize our interaction 
model as follows, 

3

Interaction Eq. (6) Eq. (8) Eq. (8) Eq. (8) Eq. (8)

(Dω)1/3 0.72 0.8 0.8 0.8 0.8

ω 0.4 0.4 0.5 0.6 0.7

mζ
u,d 0.0037 0.0034 0.0034 0.0034 0.0034

mζ
s 0.084 0.082 0.082 0.082 0.082

A(0) 1.58 2.07 1.70 1.38 1.16

M(0) 0.50 0.62 0.52 0.42 0.29

mπ 0.138 0.139 0.134 0.136 0.139

fπ 0.093 0.094 0.093 0.090 0.081

ρ1/2
π 0.48 0.49 0.49 0.49 0.48

mK 0.496 0.496 0.495 0.497 0.503

fK 0.11 0.11 0.11 0.11 0.10

ρ1/2
K 0.54 0.55 0.55 0.55 0.55

mρ 0.74 0.76 0.74 0.72 0.67

fρ 0.15 0.14 0.15 0.14 0.12

mφ 1.07 1.09 1.08 1.07 1.05

fφ 0.18 0.19 0.19 0.19 0.18

mσ 0.67 0.67 0.65 0.59 0.46

ρ1/2
σ 0.52 0.53 0.53 0.51 0.48

TABLE I. Results obtained using Eq. (8), compared with
one representative set computed using Eq. (6). The current-
quark masses at the renormalisation point ζ = 0.19GeV were
fixed by requiring a good description of mπ,K . Dimensioned
quantities are reported in GeV. NB. The “σ” listed here is
not directly comparable with the lightest scalar in the hadron
spectrum because the rainbow-ladder truncation is known a
priori to be poor approximation in this channel [37, 38].

electrically-neutral pseudoscalar-mesons computed with
Eq. (8) are practically insensitive to variations of ω ∈
[0.4, 0.6] GeV so long as Dω =constant. Furthermore,
that there is no reason to prefer Eq. (6) over Eq. (8).

However, there is reason to prefer Eq. (8) over Eq. (6).
Namely, its pointwise behaviour accords qualitatively
with results of modern DSE and lattice studies, and it
can readily be parametrised as follows [31, 32]

G(k2) ≈ 4παRL(k2)
k2 + m2

g(k2)
, m2

g(k
2) =

M4
g

M2
g + k2

, (10)

with the functions obtained in this way illustrated in
Fig. 1. As one would expect, the infrared scale for
the running gluon mass increases with increasing ω:
Mg = 0.67GeV for ω = 0.5GeV; Mg = 0.81GeV for
ω = 0.6GeV. The values of Mg are typical [30, 31].

Equally naturally, the infrared value of the coupling is
a decreasing function of ω: αRL(0)/π = 15, ω = 0.5 GeV;
αRL(0)/π = 9, ω = 0.6GeV; and αRL(M2

g )/π = 3.8,
αRL(M2

g )/π = 2.2. A context for the infrared value
of the running coupling required to describe meson ob-
servables in rainbow-ladder truncation is readily pro-
vided. With nonperturbatively-massless gauge bosons,
the coupling below which DCSB breaking is impossible
via the gap equations in QED and QCD is αc/π ≈ 1/3
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FIG. 1. Upper panel – Rainbow-ladder gluon running-mass
inferred from Eq. (8) via Eq. (10). Lower panel – rainbow-
ladder effective running-coupling inferred from Eq. (8). In
both panels: ω = 0.5GeV (solid curve); ω = 0.6GeV (dashed
curve).

[36, 42, 43]. In a symmetry-preserving regularisation of a
vector-vector contact-interaction used in rainbow-ladder
truncation, αc/π ≈ 0.4 and a description of hadron phe-
nomena requires α/π ≈ 1 [44]. With nonperturbatively
massive gluons and quarks, whose masses and couplings
run, the infrared strength required to describe hadron
phenomena in rainbow-ladder truncation is unsurpris-
ingly a little larger. Moreover, whilst a direct compar-
ison between αRL and a coupling, αQLat, inferred from
quenched-lattice results is not sensible, it is nonetheless
notable that αQLat(0) ! αRL(0) [32]. It is thus notewor-
thy that if one employs a more sophisticated, nonper-
turbative DSE truncation [37, 38], some of the infrared
strength in the gap equation’s kernel is shifted from G
into the dressed-quark-gluon vertex. This cannot mate-
rially affect the net infrared strength required to explain
observables but does reduce the amount attributed to the
effective coupling.

We also used Eq. (8) to compute the masses of selected
J = 0, 1 radial excitations and exotics, with the results
presented in Table II. The last column in the Table was
prepared as follows. We fit the entries in each row to
both m(ω) = constant and

m(ω) = ω(c0 + c1ω), (11)

3
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priori to be poor approximation in this channel [37, 38].
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FIG. 1. Upper panel – Rainbow-ladder gluon running-mass
inferred from Eq. (8) via Eq. (10). Lower panel – rainbow-
ladder effective running-coupling inferred from Eq. (8). In
both panels: ω = 0.5 GeV (solid curve); ω = 0.6GeV (dashed
curve).
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vector-vector contact-interaction used in rainbow-ladder
truncation, αc/π ≈ 0.4 and a description of hadron phe-
nomena requires α/π ≈ 1 [44]. With nonperturbatively
massive gluons and quarks, whose masses and couplings
run, the infrared strength required to describe hadron
phenomena in rainbow-ladder truncation is unsurpris-
ingly a little larger. Moreover, whilst a direct compar-
ison between αRL and a coupling, αQLat, inferred from
quenched-lattice results is not sensible, it is nonetheless
notable that αQLat(0) ! αRL(0) [32]. It is thus notewor-
thy that if one employs a more sophisticated, nonper-
turbative DSE truncation [37, 38], some of the infrared
strength in the gap equation’s kernel is shifted from G
into the dressed-quark-gluon vertex. This cannot mate-
rially affect the net infrared strength required to explain
observables but does reduce the amount attributed to the
effective coupling.

We also used Eq. (8) to compute the masses of selected
J = 0, 1 radial excitations and exotics, with the results
presented in Table II. The last column in the Table was
prepared as follows. We fit the entries in each row to
both m(ω) = constant and
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spectrum because the rainbow-ladder truncation is known a
priori to be poor approximation in this channel [37, 38].
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inferred from Eq. (8) via Eq. (10). Lower panel – rainbow-
ladder effective running-coupling inferred from Eq. (8). In
both panels: ω = 0.5GeV (solid curve); ω = 0.6GeV (dashed
curve).

[36, 42, 43]. In a symmetry-preserving regularisation of a
vector-vector contact-interaction used in rainbow-ladder
truncation, αc/π ≈ 0.4 and a description of hadron phe-
nomena requires α/π ≈ 1 [44]. With nonperturbatively
massive gluons and quarks, whose masses and couplings
run, the infrared strength required to describe hadron
phenomena in rainbow-ladder truncation is unsurpris-
ingly a little larger. Moreover, whilst a direct compar-
ison between αRL and a coupling, αQLat, inferred from
quenched-lattice results is not sensible, it is nonetheless
notable that αQLat(0) ! αRL(0) [32]. It is thus notewor-
thy that if one employs a more sophisticated, nonper-
turbative DSE truncation [37, 38], some of the infrared
strength in the gap equation’s kernel is shifted from G
into the dressed-quark-gluon vertex. This cannot mate-
rially affect the net infrared strength required to explain
observables but does reduce the amount attributed to the
effective coupling.

We also used Eq. (8) to compute the masses of selected
J = 0, 1 radial excitations and exotics, with the results
presented in Table II. The last column in the Table was
prepared as follows. We fit the entries in each row to
both m(ω) = constant and

m(ω) = ω(c0 + c1ω), (11)
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!  The infrared scale for the running gluon 
mass increases with increasing omega: 
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observables entails that the pointwise behavior of GIR(k2)
can be constrained through feedback between experiment and
theory. This is a practical means by which to develop insight
into the momentum dependence of the QCD’s β function
[3,6,13].

Following work on confinement [14,15], the interaction
at small k2 has often been expressed as either an integrable
infrared singularity, typicallyGIR(k2) ∝ δ4(k), or a finite-width
approximation to it [7,8,16–18]. The following approximation
was used in Ref. [7],

δ4(k)
ω∼0
≈ 1

π2

1
ω4

e−k2/ω2
, (4)

whereas the δ4 function itself was used in Ref. [16]. Neither
study directly sampled the solutions of the DSEs at complex
values of their arguments. This changed with Ref. [8], which
therefore required better control of numerical procedures and
hence employed an equally weighted combination of the δ4

function and the following finite-width representation:

δ4(k)
ω∼0
≈ 1

2π2

1
ω6

k2e−k2/ω2
. (5)

The material difference between this form and Eq. (4) is the
inclusion of a multiplicative factor of k2. It was introduced
solely in order to tame singularities encountered in the
numerical treatment of the transverse projection operator
k2Dfree

µν (k).
Desiring additional simplifications in the numerical anal-

ysis, the δ4-function component of GIR(k2) was completely
eliminated in Ref. [18], leaving the infrared behavior to be
described by Eq. (5) alone; viz., with s = k2,

G(s) = 4π2

ω6
Dse−s/ω2 + 8π2γmF(s)

ln
[
τ +

(
1 + s/(2

QCD

)2] , (6)

where γm = 12/(33 − 2Nf ), Nf = 4, (QCD = 0.234 GeV;
τ = e2 − 1; and F(s) = {1 − exp(−s/[4m2

t ])}/s, mt =
0.5 GeV. This form of the interaction preserves the one-loop
renormalization-group behavior of QCD in the gap equation,
and has since been employed extensively in the success-
ful prediction and explanation of hadron observables; e.g.,
Refs. [4,19–28]. This is not to say that higher-order effects are
truly negligible, only that they may be represented implicitly
through the parameters in Eq. (6).

There is an aspect of the interaction in Eq. (6) that is usually
ignored; namely, it produces a kernel for the gap equation
which possesses a zero at a small timelike value of k2, and
rapidly becomes very large and negative as the magnitude
of the timelike momentum is increased. For example, with
typical values of the model parameters [Dω = (0.72 GeV)3,
ω = 0.4 GeV]:1

G(s)
Eq.(6)= 0 for s = −(0.046GeV)2; (7)

1Predictions for numerous pseudoscalar- and vector-meson ob-
servables are approximately independent of ω on the domain ω ∈
[0.3, 0.5] as long as one maintains Dω = const [29].

the magnitude of G(s < 0) exceeds its largest spacelike value
at s = −(0.22 GeV)2, and |G(s < 0) < 0| grows faster than
exponentially with decreasing s.

These facets of the behavior produced by Eq. (6) are in stark
conflict with the results of modern DSE and lattice studies;
viz., the gluon propagator is a bounded, regular function of
spacelike momenta, which achieves its maximum value on
this domain at k2 = 0 [30–34], and the dressed-quark-gluon
vertex does not possess any structure which can qualitatively
alter this behavior [35,36]. It is thus long overdue to reconsider
a functional form whose sole raison d’être was numerical
expediency.

We therefore choose to explore the capacity of

G(s) = 8π2

ω4
De−s/ω2 + 8π2γmF(s)

ln
[
τ +

(
1 + s/(2

QCD

)2] (8)

as a tool to compute and connect hadron observables. This
is readily done now owing to improved numerical methods
for coping with DSE solutions at complex values of their
arguments [37]. Note: Equation (8) cannot be expressed via a
non-negative spectral density [3].

Regarding renormalization of the gap equation, we follow
precisely the procedures of Refs. [8,18] and use the same
renormalization point, i.e., ζ = 19 GeV. With gap equation
solutions in hand for various quark flavors, one can solve
homogeneous Bethe-Salpeter equations (BSEs) for meson
amplitudes and therefrom compute observable properties.
For example, in the isospin-symmetric limit the pion Bethe-
Salpeter amplitude is obtained via2

*π (k; P ) = −
∫ (

q

G((k − q)2)(k − q)2Dfree
µν (k − q)

× λa

2
γµS(q+)*π (q; P )S(q−)

λa

2
γν, (9)

where S(ℓ) is the u = d-quark propagator, P 2 = −m2
π , k

is the relative momentum between the constituents, and
one can choose q± = q ± P/2 without loss of generality
in a Poincaré covariant approach. This form of the BSE is
symmetry consistent with the gap equation obtained through
Eq. (3) [10,39]. All Bethe-Salpeter amplitudes are normalized
canonically (see, e.g., Eq. (27) in Ref. [8]).

In Table I we list computed results for ground-state
pseudoscalar and vector mesons. The meson masses are
obtained in solving the BSEs. Valid formulas for the other
quantities, all of which depend linearly on the meson Bethe-
Salpeter amplitudes, are presented in Refs. [8,42,43]. (Note:
The products fπρπ and fKρK describe in-pion and in-kaon
condensates [8,44,45].) The results show that observable
properties of vector- and flavored pseudoscalar mesons com-
puted with Eq. (8) are practically insensitive to variations of

2We actually include a factor of 1/Z2
2 on the left-hand side of both

Eqs. (6) and (8), which additional improvement ensures multiplicative
renormalizability in solutions of the gap and Bethe-Salpeter equations
[38].
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Refs. [4,19–28]. This is not to say that higher-order effects are
truly negligible, only that they may be represented implicitly
through the parameters in Eq. (6).

There is an aspect of the interaction in Eq. (6) that is usually
ignored; namely, it produces a kernel for the gap equation
which possesses a zero at a small timelike value of k2, and
rapidly becomes very large and negative as the magnitude
of the timelike momentum is increased. For example, with
typical values of the model parameters [Dω = (0.72 GeV)3,
ω = 0.4 GeV]:1
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Eq.(6)= 0 for s = −(0.046GeV)2; (7)

1Predictions for numerous pseudoscalar- and vector-meson ob-
servables are approximately independent of ω on the domain ω ∈
[0.3, 0.5] as long as one maintains Dω = const [29].

the magnitude of G(s < 0) exceeds its largest spacelike value
at s = −(0.22 GeV)2, and |G(s < 0) < 0| grows faster than
exponentially with decreasing s.

These facets of the behavior produced by Eq. (6) are in stark
conflict with the results of modern DSE and lattice studies;
viz., the gluon propagator is a bounded, regular function of
spacelike momenta, which achieves its maximum value on
this domain at k2 = 0 [30–34], and the dressed-quark-gluon
vertex does not possess any structure which can qualitatively
alter this behavior [35,36]. It is thus long overdue to reconsider
a functional form whose sole raison d’être was numerical
expediency.

We therefore choose to explore the capacity of

G(s) = 8π2

ω4
De−s/ω2 + 8π2γmF(s)

ln
[
τ +

(
1 + s/(2

QCD

)2] (8)

as a tool to compute and connect hadron observables. This
is readily done now owing to improved numerical methods
for coping with DSE solutions at complex values of their
arguments [37]. Note: Equation (8) cannot be expressed via a
non-negative spectral density [3].

Regarding renormalization of the gap equation, we follow
precisely the procedures of Refs. [8,18] and use the same
renormalization point, i.e., ζ = 19 GeV. With gap equation
solutions in hand for various quark flavors, one can solve
homogeneous Bethe-Salpeter equations (BSEs) for meson
amplitudes and therefrom compute observable properties.
For example, in the isospin-symmetric limit the pion Bethe-
Salpeter amplitude is obtained via2

*π (k; P ) = −
∫ (

q

G((k − q)2)(k − q)2Dfree
µν (k − q)

× λa

2
γµS(q+)*π (q; P )S(q−)

λa

2
γν, (9)

where S(ℓ) is the u = d-quark propagator, P 2 = −m2
π , k

is the relative momentum between the constituents, and
one can choose q± = q ± P/2 without loss of generality
in a Poincaré covariant approach. This form of the BSE is
symmetry consistent with the gap equation obtained through
Eq. (3) [10,39]. All Bethe-Salpeter amplitudes are normalized
canonically (see, e.g., Eq. (27) in Ref. [8]).

In Table I we list computed results for ground-state
pseudoscalar and vector mesons. The meson masses are
obtained in solving the BSEs. Valid formulas for the other
quantities, all of which depend linearly on the meson Bethe-
Salpeter amplitudes, are presented in Refs. [8,42,43]. (Note:
The products fπρπ and fKρK describe in-pion and in-kaon
condensates [8,44,45].) The results show that observable
properties of vector- and flavored pseudoscalar mesons com-
puted with Eq. (8) are practically insensitive to variations of

2We actually include a factor of 1/Z2
2 on the left-hand side of both

Eqs. (6) and (8), which additional improvement ensures multiplicative
renormalizability in solutions of the gap and Bethe-Salpeter equations
[38].
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observables entails that the pointwise behavior of GIR(k2)
can be constrained through feedback between experiment and
theory. This is a practical means by which to develop insight
into the momentum dependence of the QCD’s β function
[3,6,13].

Following work on confinement [14,15], the interaction
at small k2 has often been expressed as either an integrable
infrared singularity, typicallyGIR(k2) ∝ δ4(k), or a finite-width
approximation to it [7,8,16–18]. The following approximation
was used in Ref. [7],

δ4(k)
ω∼0
≈ 1

π2

1
ω4

e−k2/ω2
, (4)

whereas the δ4 function itself was used in Ref. [16]. Neither
study directly sampled the solutions of the DSEs at complex
values of their arguments. This changed with Ref. [8], which
therefore required better control of numerical procedures and
hence employed an equally weighted combination of the δ4

function and the following finite-width representation:

δ4(k)
ω∼0
≈ 1

2π2

1
ω6

k2e−k2/ω2
. (5)

The material difference between this form and Eq. (4) is the
inclusion of a multiplicative factor of k2. It was introduced
solely in order to tame singularities encountered in the
numerical treatment of the transverse projection operator
k2Dfree

µν (k).
Desiring additional simplifications in the numerical anal-

ysis, the δ4-function component of GIR(k2) was completely
eliminated in Ref. [18], leaving the infrared behavior to be
described by Eq. (5) alone; viz., with s = k2,

G(s) = 4π2

ω6
Dse−s/ω2 + 8π2γmF(s)

ln
[
τ +

(
1 + s/(2

QCD

)2] , (6)

where γm = 12/(33 − 2Nf ), Nf = 4, (QCD = 0.234 GeV;
τ = e2 − 1; and F(s) = {1 − exp(−s/[4m2

t ])}/s, mt =
0.5 GeV. This form of the interaction preserves the one-loop
renormalization-group behavior of QCD in the gap equation,
and has since been employed extensively in the success-
ful prediction and explanation of hadron observables; e.g.,
Refs. [4,19–28]. This is not to say that higher-order effects are
truly negligible, only that they may be represented implicitly
through the parameters in Eq. (6).

There is an aspect of the interaction in Eq. (6) that is usually
ignored; namely, it produces a kernel for the gap equation
which possesses a zero at a small timelike value of k2, and
rapidly becomes very large and negative as the magnitude
of the timelike momentum is increased. For example, with
typical values of the model parameters [Dω = (0.72 GeV)3,
ω = 0.4 GeV]:1

G(s)
Eq.(6)= 0 for s = −(0.046GeV)2; (7)

1Predictions for numerous pseudoscalar- and vector-meson ob-
servables are approximately independent of ω on the domain ω ∈
[0.3, 0.5] as long as one maintains Dω = const [29].

the magnitude of G(s < 0) exceeds its largest spacelike value
at s = −(0.22 GeV)2, and |G(s < 0) < 0| grows faster than
exponentially with decreasing s.

These facets of the behavior produced by Eq. (6) are in stark
conflict with the results of modern DSE and lattice studies;
viz., the gluon propagator is a bounded, regular function of
spacelike momenta, which achieves its maximum value on
this domain at k2 = 0 [30–34], and the dressed-quark-gluon
vertex does not possess any structure which can qualitatively
alter this behavior [35,36]. It is thus long overdue to reconsider
a functional form whose sole raison d’être was numerical
expediency.

We therefore choose to explore the capacity of

G(s) = 8π2

ω4
De−s/ω2 + 8π2γmF(s)

ln
[
τ +

(
1 + s/(2

QCD

)2] (8)

as a tool to compute and connect hadron observables. This
is readily done now owing to improved numerical methods
for coping with DSE solutions at complex values of their
arguments [37]. Note: Equation (8) cannot be expressed via a
non-negative spectral density [3].

Regarding renormalization of the gap equation, we follow
precisely the procedures of Refs. [8,18] and use the same
renormalization point, i.e., ζ = 19 GeV. With gap equation
solutions in hand for various quark flavors, one can solve
homogeneous Bethe-Salpeter equations (BSEs) for meson
amplitudes and therefrom compute observable properties.
For example, in the isospin-symmetric limit the pion Bethe-
Salpeter amplitude is obtained via2

*π (k; P ) = −
∫ (

q

G((k − q)2)(k − q)2Dfree
µν (k − q)

× λa

2
γµS(q+)*π (q; P )S(q−)

λa

2
γν, (9)

where S(ℓ) is the u = d-quark propagator, P 2 = −m2
π , k

is the relative momentum between the constituents, and
one can choose q± = q ± P/2 without loss of generality
in a Poincaré covariant approach. This form of the BSE is
symmetry consistent with the gap equation obtained through
Eq. (3) [10,39]. All Bethe-Salpeter amplitudes are normalized
canonically (see, e.g., Eq. (27) in Ref. [8]).

In Table I we list computed results for ground-state
pseudoscalar and vector mesons. The meson masses are
obtained in solving the BSEs. Valid formulas for the other
quantities, all of which depend linearly on the meson Bethe-
Salpeter amplitudes, are presented in Refs. [8,42,43]. (Note:
The products fπρπ and fKρK describe in-pion and in-kaon
condensates [8,44,45].) The results show that observable
properties of vector- and flavored pseudoscalar mesons com-
puted with Eq. (8) are practically insensitive to variations of

2We actually include a factor of 1/Z2
2 on the left-hand side of both

Eqs. (6) and (8), which additional improvement ensures multiplicative
renormalizability in solutions of the gap and Bethe-Salpeter equations
[38].
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➢ Modeling	  the	  dress	  function:	  
gluon	  mass	  scale	  +	  effective	  
running	  coupling	  constant
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➢ In	  Landau	  gauge	  (a	  fixed	  point	  of	  the	  
renormalization	  group):	  

Note	  that	  the	  
gluon	  propagator	  
has	  to	  support	  
both	  confinement	  
and	  DCSB.	  

O.	  Oliveira	  et.	  al.,	  arXiv:1002.4151

❑ The	  gluon	  mass	  scale	  is	  typical	  lattice	  QCD	  values	  in	  our	  parameter	  range:	  
Mg	  in	  [0.6,	  0.8]	  GeV.	  

❑ The	  gluon	  mass	  scale	  is	  inversely	  proportional	  to	  the	  confinement	  length.	  
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TABLE I. Results obtained using Eq. (8), compared with one rep-
resentative set computed using Eq. (6). The current-quark masses at
the renormalization point ζ = 19 GeV were fixed by requiring a good
description of mπ,K . Dimensioned quantities are reported in GeV. For
comparison, some experimental values are as follows [40]: fπ =
0.092 GeV, mπ = 0.138 GeV; fK = 0.113 GeV, mK = 0.496 GeV;
fρ = 0.153 GeV, mρ = 0.777 GeV; and fφ = 0.168 GeV, mφ = 1.02
GeV. Note: The “σ” listed here is not directly comparable with the
lightest scalar in the hadron spectrum because the rainbow-ladder
truncation is a priori known to be a poor approximation in this
channel [39,41].

Interaction Eq. (6) Eq. (8) Eq. (8) Eq. (8) Eq. (8)

(Dω)1/3 0.72 0.8 0.8 0.8 0.8
ω 0.4 0.4 0.5 0.6 0.7
m

ζ
u,d 0.0037 0.0034 0.0034 0.0034 0.0034

mζ
s 0.084 0.082 0.082 0.082 0.082

A(0) 1.58 2.07 1.70 1.38 1.16
M(0) 0.50 0.62 0.52 0.42 0.29
mπ 0.138 0.139 0.134 0.136 0.139
fπ 0.093 0.094 0.093 0.090 0.081
ρ1/2

π 0.48 0.49 0.49 0.49 0.48
mK 0.496 0.496 0.495 0.497 0.503
fK 0.11 0.11 0.11 0.11 0.10
ρ

1/2
K 0.54 0.55 0.55 0.55 0.55

mρ 0.74 0.76 0.74 0.72 0.67
fρ 0.15 0.14 0.15 0.14 0.12
mφ 1.07 1.09 1.08 1.07 1.05
fφ 0.18 0.19 0.19 0.19 0.18
mσ 0.67 0.67 0.65 0.59 0.46
ρ1/2

σ 0.52 0.53 0.53 0.51 0.48

ω ∈ [0.4, 0.6] GeV as long as Dω = const. Furthermore, there
is no reason to prefer Eq. (6) over Eq. (8).

However, there is reason to prefer Eq. (8) over Eq. (6).
Namely, its pointwise behavior accords qualitatively with
results of modern DSE and lattice studies, and it can readily
be parametrized as follows [31,33]:

G(k2) ≈ 4παRL(k2)
k2 + m2

g(k2)
, m2

g(k2) =
M4

g

M2
g + k2

, (10)

with the functions obtained in this way illustrated in Fig. 1. As
one would expect, the infrared scale for the running gluon mass
increases with increasing ω: Mg = 0.67 GeV for ω = 0.5 GeV;
Mg = 0.81 GeV for ω = 0.6 GeV. The values of Mg are typical
[30–32].

Equally naturally, the infrared value of the coupling is a
decreasing function of ω: αRL(0)/π = 15, αRL(M2

g )/π = 3.8
for ω = 0.5 GeV; and αRL(0)/π = 9, αRL(M2

g )/π = 2.2 for
ω = 0.6 GeV.

A context for the infrared value of the running coupling
required to describe meson observables in rainbow-ladder
truncation is readily provided. With nonperturbatively mass-
less gauge bosons, the coupling below which DCSB breaking
is impossible via the gap equations in QED and QCD is αc/π ≈
1/3 [38,46,47]. In a symmetry-preserving regularization of
a vector-vector contact interaction used in rainbow-ladder
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FIG. 1. (Color online) Upper panel: Rainbow-ladder gluon
running-mass inferred from Eq. (8) via Eq. (10). Lower panel:
Rainbow-ladder effective running coupling inferred from Eq. (8).
In both panels ω = 0.5 GeV (solid curve) and ω = 0.6 GeV (dashed
curve).

truncation, αc/π ≈ 0.4, and a description of hadron phenom-
ena requires α/π ≈ 1 [48]. With nonperturbatively massive
gluons and quarks, whose masses and couplings run, the
infrared strength required to describe hadron phenomena in
rainbow-ladder truncation is unsurprisingly a little larger.
Moreover, while a direct comparison between αRL and a cou-
pling αQLat inferred from quenched-lattice results is not sen-
sible, it is nonetheless interesting that αQLat(M2

g ) ! αRL(M2
g )

[33,34]. It is thus noteworthy that if one employs a more so-
phisticated, nonperturbative DSE truncation [39,41], some of
the infrared strength in the gap equation’s kernel is shifted from
G into the dressed-quark-gluon vertex. This cannot materially
affect the net infrared strength required to explain observ-
ables but does reduce the amount attributed to the effective
coupling.

We also used Eq. (8) to compute the masses of selected J =
0, 1 radial excitations and exotics, with the results presented
in Table II. The last column in the table was prepared as
follows. We fit the entries in each row to both m(ω) = const
and

m(ω) = ω(c0 + c1ω), (11)

then compute the standard deviation of the relative error
in each fit, σ0 for the constant and σ2 for Eq. (11), and

042202-3

RAPID COMMUNICATIONS

INTERACTION MODEL FOR THE GAP EQUATION PHYSICAL REVIEW C 84, 042202(R) (2011)

TABLE I. Results obtained using Eq. (8), compared with one rep-
resentative set computed using Eq. (6). The current-quark masses at
the renormalization point ζ = 19 GeV were fixed by requiring a good
description of mπ,K . Dimensioned quantities are reported in GeV. For
comparison, some experimental values are as follows [40]: fπ =
0.092 GeV, mπ = 0.138 GeV; fK = 0.113 GeV, mK = 0.496 GeV;
fρ = 0.153 GeV, mρ = 0.777 GeV; and fφ = 0.168 GeV, mφ = 1.02
GeV. Note: The “σ” listed here is not directly comparable with the
lightest scalar in the hadron spectrum because the rainbow-ladder
truncation is a priori known to be a poor approximation in this
channel [39,41].

Interaction Eq. (6) Eq. (8) Eq. (8) Eq. (8) Eq. (8)

(Dω)1/3 0.72 0.8 0.8 0.8 0.8
ω 0.4 0.4 0.5 0.6 0.7
m

ζ
u,d 0.0037 0.0034 0.0034 0.0034 0.0034

mζ
s 0.084 0.082 0.082 0.082 0.082

A(0) 1.58 2.07 1.70 1.38 1.16
M(0) 0.50 0.62 0.52 0.42 0.29
mπ 0.138 0.139 0.134 0.136 0.139
fπ 0.093 0.094 0.093 0.090 0.081
ρ1/2

π 0.48 0.49 0.49 0.49 0.48
mK 0.496 0.496 0.495 0.497 0.503
fK 0.11 0.11 0.11 0.11 0.10
ρ

1/2
K 0.54 0.55 0.55 0.55 0.55

mρ 0.74 0.76 0.74 0.72 0.67
fρ 0.15 0.14 0.15 0.14 0.12
mφ 1.07 1.09 1.08 1.07 1.05
fφ 0.18 0.19 0.19 0.19 0.18
mσ 0.67 0.67 0.65 0.59 0.46
ρ1/2

σ 0.52 0.53 0.53 0.51 0.48

ω ∈ [0.4, 0.6] GeV as long as Dω = const. Furthermore, there
is no reason to prefer Eq. (6) over Eq. (8).

However, there is reason to prefer Eq. (8) over Eq. (6).
Namely, its pointwise behavior accords qualitatively with
results of modern DSE and lattice studies, and it can readily
be parametrized as follows [31,33]:

G(k2) ≈ 4παRL(k2)
k2 + m2

g(k2)
, m2

g(k2) =
M4

g

M2
g + k2

, (10)

with the functions obtained in this way illustrated in Fig. 1. As
one would expect, the infrared scale for the running gluon mass
increases with increasing ω: Mg = 0.67 GeV for ω = 0.5 GeV;
Mg = 0.81 GeV for ω = 0.6 GeV. The values of Mg are typical
[30–32].

Equally naturally, the infrared value of the coupling is a
decreasing function of ω: αRL(0)/π = 15, αRL(M2

g )/π = 3.8
for ω = 0.5 GeV; and αRL(0)/π = 9, αRL(M2

g )/π = 2.2 for
ω = 0.6 GeV.

A context for the infrared value of the running coupling
required to describe meson observables in rainbow-ladder
truncation is readily provided. With nonperturbatively mass-
less gauge bosons, the coupling below which DCSB breaking
is impossible via the gap equations in QED and QCD is αc/π ≈
1/3 [38,46,47]. In a symmetry-preserving regularization of
a vector-vector contact interaction used in rainbow-ladder
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FIG. 1. (Color online) Upper panel: Rainbow-ladder gluon
running-mass inferred from Eq. (8) via Eq. (10). Lower panel:
Rainbow-ladder effective running coupling inferred from Eq. (8).
In both panels ω = 0.5 GeV (solid curve) and ω = 0.6 GeV (dashed
curve).

truncation, αc/π ≈ 0.4, and a description of hadron phenom-
ena requires α/π ≈ 1 [48]. With nonperturbatively massive
gluons and quarks, whose masses and couplings run, the
infrared strength required to describe hadron phenomena in
rainbow-ladder truncation is unsurprisingly a little larger.
Moreover, while a direct comparison between αRL and a cou-
pling αQLat inferred from quenched-lattice results is not sen-
sible, it is nonetheless interesting that αQLat(M2

g ) ! αRL(M2
g )

[33,34]. It is thus noteworthy that if one employs a more so-
phisticated, nonperturbative DSE truncation [39,41], some of
the infrared strength in the gap equation’s kernel is shifted from
G into the dressed-quark-gluon vertex. This cannot materially
affect the net infrared strength required to explain observ-
ables but does reduce the amount attributed to the effective
coupling.

We also used Eq. (8) to compute the masses of selected J =
0, 1 radial excitations and exotics, with the results presented
in Table II. The last column in the table was prepared as
follows. We fit the entries in each row to both m(ω) = const
and

m(ω) = ω(c0 + c1ω), (11)

then compute the standard deviation of the relative error
in each fit, σ0 for the constant and σ2 for Eq. (11), and
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