An Opportunity for Forward Jet Single Spin Asymmetry Measurements at RHIC

Michael P. McCumber

Los Alamos National Laboratory

Overview

- Forward jet left-right asymmetries in p¹+p are actually sensitive to valence quarks' Sivers-type distribution
- The gauge invariance requirement of QCD results in the "process dependence behavior" of Sivers-type distribution that can be witnessed by jet measurements
- A_NDY's jet A_N measurement (small asymmetries) is understood as an almost exact cancellation between up and down quark Sivers-type effect.
- 4. Forward detector upgrades at RHIC have an opportunity to clearly verify "Sivers-type distribution process dependency" by selecting "tagged-jet events" to enhance up or down quark contributions and apply different selection criteria, which leads to opposite predicted behaviors of jet A_N according to different types of theories

Transverse Single Spin Asymmetry

TSSA measured via particle production relative to proton spin direction, i.e.:

$$N(\phi) = N_0 [1 + PA_N \cos \phi]$$

where P is the polarization

Theoretical expectations via collinear pQCD:

Only small asymmetries predicted

Experimental Observations

E704 measured A_N of a polarized proton on fixed target and discovered large A_N values at large x_F

Large positive values for π^+ Smaller positive values for π^0 Large **negative values for** π^-

Indicative of a valence quark effect

Positive effect from up-quark Negative effect from down-quark

Existing RHIC Measurements

PHENIX and STAR have measured similar large π^0 asymmetries in the forward direction at RHIC energies of 62.4-200 GeV

BRAHMS has also measured large transverse asymmetries of the charged pions at 62.4 GeV

Large forward TSSA are accessible at RHIC energies

Physical Explanations

Transverse momentum dependence incorporated directly into **proton structure function**

 $\propto \bar{f}_{1T}^{\perp q}(x, \mathbf{k}_{\perp}^2) \times D_q^h(z)$

Physical Explanations

Source separation can be achieved by full reconstruction of the jet fragmentation

Physical Explanations

Source separation can be achieved by full reconstruction of the jet fragmentation

Higher-twist approach has parallels to above effects:

additional terms incorporated into extended pQCD calculation, different structure func. predicts $A_N \sim 1/p_T$ at $p_T >>$ few GeV/c, in contrast to Collins and so **requires high statistics large** p_T **measurements (aka inclusive 'jets')**

A_NDY Measurements

A_NDY Interpretation

Modest jet A_N values are believed to **require a large cancellation** between contributions of up and down quark jets

With charged particle tracking and large acceptance, we will be able to separate these sources

Changing the Mix

The Idea: cut on electromagnetic charge within the jet Most Primitive Approach: cut on leading charge, z > 0.5

Pythia Anti-k_ R=0.7 p_ > 4 GeV/c, η = 1.7-3.3 0.9 up quark down quark 0.8 other partons 0.7 beam sources of jets 0.5 0.4 up quarks 0.3 down quarks 0.2 0.1E ° 0.2 0.3 0.1 0.4 0.5 0.6 0.7 $x_F = p_z / p_{beam}$

natural admixture of jet sources

Changing the Mix

The Idea: cut on electromagnetic charge within the jet Most Primitive Approach: cut on leading charge, z > 0.5

largely clean extraction of up quark jets

natural admixture of jet sources

Changing the Mix

The Idea: cut on electromagnetic charge within the jet Most Primitive Approach: cut on leading charge, z > 0.5

largely clean extraction of up quark jets

natural admixture of jet sources

enrichment of down quark jets

Charge Sign Selection

leading charge sign occurs in 10-14% of jets

fewer negative charge sign jets

however... copious jet production will allow a reach up to $x_F \sim 0.7$ with these cuts

Example Up & Down A_N Extraction

$\begin{array}{c} measured \ A_N \\ with \ leading \ charge \ sign \ jets \end{array}$

Example Up & Down A_N Extraction

$\begin{array}{c} measured \ A_N \\ with \ leading \ charge \ sign \ jets \end{array}$

extracted quark A_N against model inputs

Different Models, Different Expectations

new kinematic window (beam energy, pseudorapidity) will give a different set of results than was found at A_NDY and framework results diverge away from this experimental constraint

Different Models, Different Expectations II

opportunity to distinguish between leading process-dependent models at very large x_F

similar physics goal as direct photon and DY

Jet Substructure

Simultaneous measurements of...

Direct access to Collins physics within the jet High statistics at large jet energies

STAR Forward Calorimetry

Forward EMCal has allowed STAR to begin a forward jet program.

Intriguing event activity preliminary results.

STAR Extension Concept

"detection capability for ... jets and leading hadrons" ~ STAR

More: <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0605</u>

sPHENIX Extension Concept

More: http://www.phenix.bnl.gov/phenix/WWW/publish/dave/sPHENIX/pp_pA_whitepaper.pdf

Summary

- Forward jet left-right asymmetries in p¹+p are actually sensitive to valence quarks' Sivers-type distribution
- The gauge invariance requirement of QCD results in the "process dependence behavior" of Sivers-type distribution that can be witnessed by jet measurements
- A_NDY's jet A_N measurement (small asymmetries) is understood as an almost exact cancellation between up and down quark Sivers-type effect.
- 4. Forward detector upgrades at RHIC have an opportunity to clearly verify "Sivers-type distribution process dependency" by selecting "tagged-jet events" to enhance up or down quark contributions and apply different selection criteria, which leads to opposite predicted behaviors of jet A_N according to different types of theories

Attempts to Understand RHIC data

(1) Describe **SIDIS and e⁺e⁻ data** with a combination of Sivers

and Collins contributions

key issue: limited x_F coverage of existing data

see: M. Anselmino, et al. Physical Review D 87, 094019 (2013)

(2) **Extrapolate to larger x_F** and Q^2 for p+p collisions at RHIC

(3) **Make Sivers- and Collins-only projections** against the RHIC single particle data constrained by the SIDIS and e+e- data

20

Sivers-only RHIC Projections

Sivers projections from SIDIS and e⁺e⁻ onto RHIC data have **large known and unknown theoretical uncertainties**

"can only be considered as a phenomenological model for hadronic process"

"the large x behavior of the Sivers function could not, and still cannot, be constrained by SIDIS data"

Settings can be found that describe all but the large p_T and large x_F extrema so **Sivers could explain most of the RHIC data**, but no stronger conclusions can be reached.

see: M. Anselmino, et al. Physical Review D 88, 054023 (2013)

Collins-only RHIC Projections

AN

Collins projections from SIDIS and e⁺e⁻ onto RHIC data also have **large known and unknown theoretical uncertainties**

Collins-only agreement worse at large xF and pT than for the Sivers-only projections.

Collins could contribute a significant portion of the asymmetries at RHIC

see: M. Anselmino, et al. Physical Review D 86, 074032 (2012)

Take-away:

Fraction of contribution from Sivers vs Collins unknown at RHIC kinematics

Validity of evolution method also not confirmed

Sorting out Evolution

Theoretical Unknowns: TMD framework (e+p) and Twist-3 framework (p+p) are mutually exclusive due to a **"sign mismatch" problem.**

TMDs related to Twist-3 by the k_{T-} moment of the Sivers functions:

$$gT_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{SIDIS}$$

23

Three basic solutions to this problem...

(1) Assumed \mathbf{k}_T forms have the incorrect large k_T dependence

(2) Rapid transition in x

(3) **Collins contributions** to A_N are much more than assumed

Resolution of this issue is a **NSAC Milestone**:

"Test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep-inelastic scattering." see: Kang, et al. Physical Review D 83, 094001 (2011)

Pythia Ancestry

Final state jets are assigned an origin by greatest truth energy contribution from sources labeled in **red**.