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Outline

project goals:
comprehensive survey of QCD stationary states in finite volume
hadron scattering phase shifts, decay widths

preliminary results for 20 channels I = 1, S = 0

correlator matrices of size 100× 100
large number of extended single-hadron operators
attempt to include all needed 2-hadron operators

preliminary results for I = 1
2 , S = 1, T1u

very preliminary results for I = 0, S = 0, A+
1u

I = 1 P -wave ππ scattering phase shifts and width of ρ
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Extended operators for single hadrons

quark displacements build up orbital, radial structure

Φ
AB

αβ (p, t) =
∑

x e
ip·(x+ 1

2 (dα+dβ))δab q
B
bβ(x, t) qAaα(x, t)

Φ
ABC

αβγ (p, t) =
∑

x e
ip·xεabc q

C
cγ(x, t) qBbβ(x, t) qAaα(x, t)

group-theory projections onto irreps of lattice symmetry group

M l(t) = c
(l)∗
αβ Φ

AB

αβ (t) Bl(t) = c
(l)∗
αβγ Φ

ABC

αβγ (t)

definite momentum p, irreps of little group of p
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Two-hadron operators

our approach: superposition of products of single-hadron
operators of definite momenta

cI3aI3bpaλa; pbλb
BIaI3aSapaΛaλaia

BIbI3bSbpbΛbλbib

fixed total momentum p = pa + pb, fixed Λa, ia,Λb, ib

group-theory projections onto little group of p and isospin irreps
restrict attention to certain classes of momentum directions

on axis ±x̂, ±ŷ, ±ẑ
planar diagonal ±x̂± ŷ, ±x̂± ẑ, ±ŷ ± ẑ
cubic diagonal ±x̂± ŷ ± ẑ

efficient creating large numbers of two-hadron operators
generalizes to three, four, . . . hadron operators

4 / 49



Testing our two-meson operators

(left) Kπ operator in T1u I = 1
2 channels

(center and right) comparison with localized ππ operators

(ππ)A
+
1g (t) =

∑
x π

+(x, t) π+(x, t),

(ππ)T
+
1u(t) =

∑
x,k=1,2,3

{
π+(x, t) ∆kπ

0(x, t)−π0(x, t) ∆kπ
+(x, t)

}

less contamination from higher states in our ππ operators
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Quark line diagrams

temporal correlations involving our two-hadron operators need
slice-to-slice quark lines (from all spatial sites on a time slice to all
spatial sites on another time slice)
sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!

6 / 49



Stochastic estimation of quark propagators

do not need exact inverse of Dirac matrix K[U ]

use noise vectors η satisfying E(ηi) = 0 and E(ηiη
∗
j ) = δij

Z4 noise is used {1, i,−1,−i}
solve K[U ]X(r) = η(r) for each of NR noise vectors η(r), then
obtain a Monte Carlo estimate of all elements of K−1

K−1
ij ≈

1

NR

NR∑
r=1

X
(r)
i η

(r)∗
j

variance reduction using noise dilution
dilution introduces projectors

P (a)P (b) = δabP (a),
∑
a

P (a) = 1, P (a)† = P (a)

define
η[a] = P (a)η, X [a] = K−1η[a]

to obtain Monte Carlo estimate with drastically reduced variance

K−1
ij ≈

1

NR

NR∑
r=1

∑
a

X
(r)[a]
i η

(r)[a]∗
j
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Correlators and quark line diagrams

baryon correlator

Cll ≈
1

NR

∑
r

∑
dAdBdC

B(r)[dAdBdC ]
l (ϕA, ϕB , ϕC)B(r)[dAdBdC ]

l
(%A, %B , %C)∗

express diagrammatically

meson correlator
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More complicated correlators

two-meson to two-meson correlators (non isoscalar mesons)
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Quantum numbers in toroidal box

periodic boundary conditions in
cubic box

not all directions equivalent⇒
using JPC is wrong!!

label stationary states of QCD in a periodic box using irreps of
cubic space group even in continuum limit

zero momentum states: little group Oh

A1a, A2ga, Ea, T1a, T2a, G1a, G2a, Ha, a = g, u
on-axis momenta: little group C4v

A1, A2, B1, B2, E, G1, G2

planar-diagonal momenta: little group C2v

A1, A2, B1, B2, G1, G2

cubic-diagonal momenta: little group C3v

A1, A2, E, F1, F2, G

include G parity in some meson sectors (superscript + or −)

10 / 49



Spin content of cubic box irreps

numbers of occurrences of Λ irreps in J subduced

J A1 A2 E T1 T2

0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
5 0 0 1 2 1
6 1 1 1 1 2
7 0 1 1 2 2

J G1 G2 H J G1 G2 H
1
2 1 0 0 9

2 1 0 2
3
2 0 0 1 11

2 1 1 2
5
2 0 1 1 13

2 1 2 2
7
2 1 1 1 15

2 1 1 3
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Common hadrons

irreps of commonly-known hadrons at rest

Hadron Irrep Hadron Irrep Hadron Irrep

π A−1u K A1u η, η′ A+
1u

ρ T+
1u ω, φ T−1u K∗ T1u

a0 A+
1g f0 A+

1g h1 T−1g

b1 T+
1g K1 T1g π1 T−1u

N,Σ G1g Λ,Ξ G1g ∆,Ω Hg
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Ensembles and run parameters

plan to use three Monte Carlo ensembles
(323|240): 412 configs 323 × 256, mπ ≈ 240 MeV, mπL ∼ 4.4
(243|240): 584 configs 243 × 128, mπ ≈ 240 MeV, mπL ∼ 3.3
(243|390): 551 configs 243 × 128, mπ ≈ 390 MeV, mπL ∼ 5.7

anisotropic improved gluon action, clover quarks (stout links)
QCD coupling β = 1.5 such that as ∼ 0.12 fm, at ∼ 0.035 fm
strange quark mass ms = −0.0743 nearly physical (using kaon)
work in mu = md limit so SU(2) isospin exact
generated using RHMC, configs separated by 20 trajectories

stout-link smearing in operators ξ = 0.10 and nξ = 10

LapH smearing cutoff σ2
s = 0.33 such that

Nv = 112 for 243 lattices
Nv = 264 for 323 lattices

source times:
4 widely-separated t0 values on 243

8 t0 values used on 323 lattice
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Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

Cij(t) =
∑
n

Z
(n)
i Z

(n)∗
j e−Ent, Z

(n)
j = 〈0| Oj |n〉

not practical to do fits using above form
define new correlation matrix C̃(t) using a single rotation

C̃(t) = U† C(τ0)−1/2 C(t) C(τ0)−1/2 U

columns of U are eigenvectors of C(τ0)−1/2 C(τD)C(τ0)−1/2

choose τ0 and τD large enough so C̃(t) diagonal for t > τD

effective energies
m̃eff
α (t) =

1

∆t
ln

(
C̃αα(t)

C̃αα(t+ ∆t)

)
tend to N lowest-lying stationary state energies in a channel

2-exponential fits to C̃αα(t) yield energies Eα and overlaps Z(n)
j
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I = 1, S = 0, T+
1u channel

effective energies m̃eff(t) for levels 0 to 24
energies obtained from two-exponential fits
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I = 1, S = 0, T+
1u energy extraction, continued

effective energies m̃eff(t) for levels 25 to 49
energies obtained from two-exponential fits
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Level identification

level identification inferred from Z overlaps with probe operators
analogous to experiment: infer resonances from scattering cross
sections
keep in mind:

probe operators Oj act on vacuum, create a “probe state” |Φj〉,
Z ’s are overlaps of probe state with each eigenstate

|Φj〉 ≡ Oi|0〉, Z
(n)
j = 〈Φj |n〉

have limited control of “probe states” produced by probe operators
ideal to be ρ, single ππ, and so on
use of small−a expansions to characterize probe operators
use of smeared quark, gluon fields
field renormalizations

mixing is prevalent
identify by dominant probe state(s) whenever possible
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Level identification

overlaps for various operators
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Identifying quark-antiquark resonances

resonances: finite-volume “precursor states”
probes: optimized single-hadron operators

analyze matrix of just single-hadron operators O
[SH]
i (12× 12)

perform single-rotation as before to build probe operators
O
′[SH]
m =

∑
i v
′(m)∗
i O

[SH]
i

obtain Z ′ factors of these probe operators

Z ′(n)
m = 〈0| O′[SH]

m |n〉
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Staircase of energy levels

stationary state energies I = 1, S = 0, T+
1u channel on

(323 × 256) anisotropic lattice

Levels
0

1

2

3

4

m
/m

K

single-hadron dominated

two-hadron dominated

significant mixing

T1up
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Summary and comparison with experiment

right: energies of qq-dominant states as ratios over mK for
(323|240) ensemble (resonance precursor states)
left: experiment
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Bosonic I = 1, S = 0, A−1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, E+
u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, T−1g channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1, S = 0, T−1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Bosonic I = 1
2 , S = 1, T1u channel

kaon channel: effective energies m̃eff(t) for levels 0 to 8
results for 323 × 256 lattice for mπ ∼ 240 MeV
two-exponential fits
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Bosonic I = 1
2 , S = 1, T1u channel

effective energies m̃eff(t) for levels 9 to 17
results for 323 × 256 lattice for mπ ∼ 240 MeV
two-exponential fits

27 / 49



Bosonic I = 1
2 , S = 1, T1u channel

effective energies m̃eff(t) for levels 18 to 23
dashed lines show energies from single exponential fits
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Bosonic I = 1
2 , S = 1, T1u channel

finite-volume stationary-state energies: “staircase” plot
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
blue: levels of max ovelaps with SH optimized operators
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Preliminary I = 1
2 , S = 1, T1u Results

Lowest level diagonalized correlator fit
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
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Preliminary I = 1
2 , S = 1, T1u Results

Second level diagonalized correlator fit
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
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Preliminary I = 1
2 , S = 1, T1u Results

Third level diagonalized correlator fit
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
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Preliminary I = 1
2 , S = 1, T1u Results

Fourth level diagonalized correlator fit
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
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Preliminary I = 1
2 , S = 1, T1u Results

Fifth level diagonalized correlator fit
323 × 256 lattice for mπ ∼ 240 MeV
use of single- and two-meson operators only
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Preliminary I = 0, S = 0, A+
1u Results

Lowest level diagonalized correlator fit
323 × 256 lattice for mπ ∼ 240 MeV
use of single-meson operators only

35 / 49



Preliminary I = 0, S = 0, A+
1u Results

Second level diagonalized correlator fit
323 × 256 lattice for mπ ∼ 240 MeV
use of single-meson operators only
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Scattering phase shifts from finite-volume energies

correlator of two-particle operator σ in finite volume

Bethe-Salpeter kernel

C∞(P ) has branch cuts where two-particle thresholds begin
momentum quantization in finite volume: cuts→ series of poles
CL poles: two-particle energy spectrum of finite volume theory
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Phase shift from finite-volume energies (con’t)

finite-volume momentum sum is infinite-volume integral plus
correction F

define the following quantities: A, A′, invariant scattering
amplitude iM
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Phase shifts from finite-volume energies (con’t)

subtracted correlator Csub(P ) = CL(P )− C∞(P ) given by

sum geometric series

Csub(P ) = A F(1− iMF)−1 A′.

poles of Csub(P ) are poles of CL(P ) from det(1− iMF) = 0
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Phase shifts from finite-volume energies (con’t)

work in spatial L3 volume with periodic b.c.
total momentum P = (2π/L)d, where d vector of integers
masses m1 and m2 of particle 1 and 2
calculate lab-frame energy E of two-particle interacting state in
lattice QCD
boost to center-of-mass frame by defining:

Ecm =
√
E2 − P 2, γ =

E

Ecm
,

q2
cm =

1

4
E2

cm −
1

2
(m2

1 +m2
2) +

(m2
1 −m2

2)2

4E2
cm

,

u2 =
L2q2

cm

(2π)2
, s =

(
1 +

(m2
1 −m2

2)

E2
cm

)
d

E related to S matrix (and phase shifts) by

det[1 + F (s,γ,u)(S − 1)] = 0,

where F matrix defined next slide
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Phase shifts from finite-volume energies (con’t)

F matrix in JLS basis states given by

F
(s,γ,u)
J′mJ′L′S′a′; JmJLSa

=
ρa
2
δa′aδS′S

{
δJ′JδmJ′mJ δL′L

+W
(s,γ,u)
L′mL′ ; LmL

〈J ′mJ′ |L′mL′ , SmS〉〈LmL, SmS |JmJ〉
}
,

total angular mom J, J ′, orbital mom L,L′, intrinsic spin S, S′

a, a′ channel labels
ρa = 1 distinguishable particles, ρa = 1

2 identical

W
(s,γ,u)
L′mL′ ; LmL

=
2i

πγul+1
Zlm(s, γ, u2)

∫
d2Ω Y ∗L′mL′ (Ω)Y ∗lm(Ω)YLmL(Ω)

Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Zlm
defined next slide
F (s,γ,u) diagonal in channel space, mixes different J, J ′

recall S diagonal in angular momentum, but off-diagonal in
channel space
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RGL shifted zeta functions

compute Zlm using

Zlm(s, γ, u2) =
∑
n∈Z3

Ylm(z)

(z2 − u2)
e−Λ(z2−u2)

+δl0γπe
Λu2

(
2uD(u

√
Λ)− Λ−1/2

)
+

ilγ

Λl+1/2

∫ 1

0

dt
(π
t

)l+3/2

eΛtu2 ∑
n∈Z3
n 6=0

eπin·sYlm(w) e−π
2w2/(tΛ)

where

z = n− γ−1
[

1
2 + (γ − 1)s−2n · s

]
s,

w = n− (1− γ)s−2s · ns, Ylm(x) = |x|l Ylm(x̂)

D(x) = e−x
2

∫ x

0

dt et
2

(Dawson function)

choose Λ ≈ 1 for convergence of the summation
integral done Gauss-Legendre quadrature, Dawson with Rybicki
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P -wave I = 1 ππ scattering

for P -wave phase shift δ1(Ecm) for ππ I = 1 scattering
define

wlm =
Zlm(s, γ, u2)

γπ3/2ul+1

d Λ cot δ1

(0,0,0) T+
1u Re w0,0

(0,0,1) A+
1 Re w0,0 + 2√

5
Re w2,0

E+ Re w0,0 − 1√
5
Re w2,0

(0,1,1) A+
1 Re w0,0 + 1

2
√

5
Re w2,0 −

√
6
5 Im w2,1 −

√
3
10Re w2,2,

B+
1 Re w0,0 − 1√

5
Re w2,0 +

√
6
5Re w2,2,

B+
2 Re w0,0 + 1

2
√

5
Re w2,0 +

√
6
5 Imw2,1 −

√
3
10Re w2,2

(1,1,1) A+
1 Re w0,0 + 2

√
6
5 Im w2,2

E+ Re w0,0 −
√

6
5 Im w2,2
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Finite-volume ππ I = 1 energies

ππ-state energies for various d2

dashed lines are non-interacting energies, shaded region above
inelastic thresholds
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Pion dispersion relation

boost to cm frame requires aspect ratio on anisotropic lattice
aspect ratio ξ from pion dispersion

(atE)2 = (atm)2 +
1

ξ2

(
2πas
L

)2

d2

slope below equals (π/(16ξ))2, where ξ = as/at
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0.000
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I = 1 ππ scattering phase shift and width of the ρ

preliminary results 323×256, mπ≈240 MeV
additional collaborator: Ben Hoerz (Dublin)
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Conclusion

goal: comprehensive survey of energy spectrum of QCD
stationary states in a finite volume
stochastic LapH method works very well

allows evaluation of all needed quark-line diagrams
source-sink factorization facilitates large number of operators
last_laph software completed for evaluating correlators

analysis software sigmond urgently being developed
analysis of 20 channels I = 1, S = 0 for (243|390) and (323|240)
ensembles nearing completion
can evaluate and analyze correlator matrices of unprecedented
size 100× 100 due to XSEDE resources
study various scattering phase shifts also planned
infinite-volume resonance parameters from finite-volume
energies −→ need new effective field theory techniques
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