Aspects of Lattice QCD calculations

of transverse momentum-dependent parton distributions (TMDs)

Michael Engelhardt

New Mexico State University

In collaboration with:B. Musch, P. Hägler, J. Negele, A. SchäferT. Bhattacharya, R. Gupta, B. YoonS. Syritsyn, A. Pochinsky, J. R. Green, S. Meinel

Fundamental TMD correlator

$$\widetilde{\Phi}_{\text{unsubtr.}}^{[\Gamma]}(b, P, S, \ldots) \equiv \frac{1}{2} \langle P, S | \ \overline{q}(0) \ \Gamma \ \mathcal{U}[0, \ldots, b] \ q(b) \ | P \rangle$$

$$\Phi^{[\Gamma]}(x,k_T,P,S,\ldots) \equiv \int \frac{d^2 b_T}{(2\pi)^2} \int \frac{d(b\cdot P)}{(2\pi)P^+} \exp\left(ix(b\cdot P) - ib_T \cdot k_T\right) \frac{\widetilde{\Phi}_{\text{unsu}}^{[\Gamma]}}{\Phi_{\text{unsu}}}$$

- "Soft factor" $\widetilde{\mathcal{S}}$ required to subtract divergences of Wilson line \mathcal{U}
- $\widetilde{\mathcal{S}}$ is typically a combination of vacuum expectation values of Wilson line structures
- Here, will consider only ratios in which soft factors cancel

 $\frac{\frac{]}{\text{nsubtr.}}(b, P, S, \ldots)}{\widetilde{\mathcal{S}}(b^2, \ldots)} \bigg|_{b^+=0}$

Gauge link structure motivated by SIDIS

Gauge link structure: In matrix element $\widetilde{\Phi}_{\text{unsubtr.}}^{[\Gamma]}(b, P, S, \ldots) \equiv$ $\frac{1}{2}\langle P, S | \bar{q}(0) \Gamma \mathcal{U}[0, \dots, b] q(b) | P, S \rangle$

Staple-shaped gauge link $\mathcal{U}[0, \eta v, \eta v + b, b]$

 $l + H(P) \longrightarrow l' + h(P_h) + X$

incorporates SIDIS final state effects

Gauge link structure motivated by SIDIS

Beyond tree level: Rapidity divergences suggest taking staple direction slightly off the light cone. Approach of Aybat, Collins, Qiu, Rogers makes v space-like. Parametrize in terms of Collins-Soper parameter

$$\hat{\zeta} \equiv \frac{P \cdot v}{|P||v|}$$

Light-like staple for $\hat{\zeta} \to \infty$. Perturbative evolution equations for large $\hat{\zeta}$.

Fundamental TMD correlator

$$\widetilde{\Phi}_{\text{unsubtr.}}^{[\Gamma]}(b, P, S, \ldots) \equiv \frac{1}{2} \langle P, S | \ \overline{q}(0) \ \Gamma \ \mathcal{U}[0, \eta v, \eta v + b, b] \ q(b)$$

$$\Phi^{[\Gamma]}(x,k_T,P,S,\ldots) \equiv \int \frac{d^2 b_T}{(2\pi)^2} \int \frac{d(b\cdot P)}{(2\pi)P^+} \exp\left(ix(b\cdot P) - ib_T\cdot k_T\right) \frac{\widetilde{\Phi}_{\text{unsu}}^{[\Gamma]}}{(2\pi)P^+}$$

- "Soft factor" $\widetilde{\mathcal{S}}$ required to subtract divergences of Wilson line \mathcal{U}
- $\widetilde{\mathcal{S}}$ is typically a combination of vacuum expectation values of Wilson line structures
- Here, will consider only ratios in which soft factors cancel

$|P, S\rangle$

Decomposition of Φ into TMDs

All leading twist structures:

$$\Phi^{[\gamma^+]} = f_1 - \left[\frac{\epsilon_{ij}k_iS_j}{m_H}f_{1T}^{\perp}\right] \text{odd}$$

$$\Phi^{[\gamma^+\gamma^5]} = \Lambda g_1 + \frac{k_T \cdot S_T}{m_H} g_{1T}$$

$$\Phi^{[i\sigma^{i+}\gamma^{5}]} = S_{i}h_{1} + \frac{(2k_{i}k_{j} - k_{T}^{2}\delta_{ij})S_{j}}{2m_{H}^{2}}h_{1T}^{\perp} + \frac{\Lambda k_{i}}{m_{H}}h_{1L}^{\perp} + \left[\frac{\epsilon_{ij}k_{j}}{m_{H}}h_{1L}^{\perp}\right] + \frac{\epsilon_{ij}k_{j}}{m_{H}}h_{1L}^{\perp} + \frac{\epsilon_{ij}$$

$\left[\frac{k_j}{4}h_1^{\perp}\right]$ odd

TMD Classification

All leading twist structures:

Sivers (T-odd)

Boer-Mulders (T-odd)

Decomposition of $\widetilde{\Phi}$ into amplitudes

$$\widetilde{\Phi}_{\text{unsubtr.}}^{[\Gamma]}(b, P, S, \hat{\zeta}, \mu) \equiv \frac{1}{2} \langle P, S | \ \bar{q}(0) \ \Gamma \ \mathcal{U}[0, \eta v, \eta v + b, b] \ q(b)$$

Decompose in terms of invariant amplitudes; at leading twist,

$$\frac{1}{2P^{+}} \widetilde{\Phi}_{\text{unsubtr.}}^{[\gamma^{+}]} = \widetilde{A}_{2B} + im_{H} \epsilon_{ij} b_{i} S_{j} \widetilde{A}_{12B}$$

$$\frac{1}{2P^{+}} \widetilde{\Phi}_{\text{unsubtr.}}^{[\gamma^{+}\gamma^{5}]} = -\Lambda \widetilde{A}_{6B} + i[(b \cdot P)\Lambda - m_{H}(b_{T} \cdot S_{T})] \widetilde{A}_{7B}$$

$$\frac{1}{2P^{+}} \widetilde{\Phi}_{\text{unsubtr.}}^{[i\sigma^{i+}\gamma^{5}]} = im_{H} \epsilon_{ij} b_{j} \widetilde{A}_{4B} - S_{i} \widetilde{A}_{9B}$$

$$-im_{H} \Lambda b_{i} \widetilde{A}_{10B} + m_{H}[(b \cdot P)\Lambda - m_{H}(b_{T} \cdot S_{T})]$$

(Decompositions analogous to work by Metz et al. in momentum space)

b) $|P,S\rangle$

 $(T)]b_i\widetilde{A}_{11B}$

Fourier-transformed TMDs

$$\tilde{f}(x, b_T^2, \ldots) \equiv \int d^2k_T \exp(ib_T \cdot k_T) f(x, k_T^2, \ldots)$$
$$\tilde{f}^{(n)}(x, b_T^2, \ldots) \equiv n! \left(-\frac{2}{m_H^2} \partial_{b_T^2}\right)^n \tilde{f}(x, b_T^2, \ldots)$$

In limit $|b_T| \rightarrow 0$, recover k_T -moments:

$$\tilde{f}^{(n)}(x,0,\ldots) \equiv \int d^2k_T \left(\frac{k_T^2}{2m_H^2}\right)^n f(x,k_T^2,\ldots) \equiv f^{(n)}(x,k_T^2,\ldots)$$

ill-defined for large k_T , so will not attempt to extrapolate to $b_T = 0$, but give results at finite $|b_T|$.

In this study, only consider first x-moments (accessible at $b \cdot P = 0$), rather than scanning range of $b \cdot P$:

$$f^{[1]}(k_T^2,...) \equiv \int_{-1}^{1} dx f(x,k_T^2,...)$$

 \rightarrow Bessel-weighted asymmetries (Boer, Gamberg, Musch, Prokudin, JHEP 1110 (2011) 021)

(x)

Relation between Fourier-transformed TMDs and invariant amplitudes \tilde{A}_i

Invariant amplitudes directly give selected x-integrated TMDs in Fourier (b_T) space (showing just the ones relevant for Sivers, Boer-Mulders shifts), up to soft factors:

$$\tilde{f}_{1}^{[1](0)}(b_{T}^{2},\hat{\zeta},\ldots,\eta v\cdot P) = 2\tilde{A}_{2B}(-b_{T}^{2},0,\hat{\zeta},\eta v\cdot P)/\tilde{S}(b^{2},$$
$$\tilde{f}_{1T}^{\perp1}(b_{T}^{2},\hat{\zeta},\ldots,\eta v\cdot P) = -2\tilde{A}_{12B}(-b_{T}^{2},0,\hat{\zeta},\eta v\cdot P)/\tilde{S}(b^{2},$$
$$\tilde{h}_{1}^{\perp1}(b_{T}^{2},\hat{\zeta},\ldots,\eta v\cdot P) = 2\tilde{A}_{4B}(-b_{T}^{2},0,\hat{\zeta},\eta v\cdot P)/\tilde{S}(b^{2},$$

 $(b^2, ...)$

Generalized shifts

Form ratios in which soft factors, (Γ -independent) multiplicative renormalization factors cancel

Boer-Mulders shift:

$$\langle k_y \rangle_{UT} \equiv m_H \frac{\tilde{h}_1^{\perp1}}{\tilde{f}_1^{[1](0)}} = \frac{\int dx \int d^2 k_T \, k_y \Phi^{[\gamma^+ + s^j i \sigma^{j+} \gamma^5]}(x, k_T, P, \dots)}{\int dx \int d^2 k_T \, \Phi^{[\gamma^+ + s^j i \sigma^{j+} \gamma^5]}(x, k_T, P, \dots)} \bigg|_{s_T = (1, 0)}$$

Average transverse momentum of quarks polarized in the orthogonal transverse ("T") direction in an unpolarized ("U") hadron; normalized to the number of valence quarks. "Dipole moment" in $b_T^2 = 0$ limit, "shift".

Issue: k_T -moments in this ratio singular; generalize to ratio of Fourier-transformed TMDs at nonzero b_T^2 ,

$$\langle k_y \rangle_{UT}(b_T^2, \ldots) \equiv m_H \frac{\tilde{h}_1^{\perp1}(b_T^2, \ldots)}{\tilde{f}_1^{[1](0)}(b_T^2, \ldots)}$$

(remember singular $b_T \to 0$ limit corresponds to taking k_T -moment). "Generalized shift".

Generalized shifts from amplitudes

Now, can also express this in terms of invariant amplitudes:

$$\langle k_y \rangle_{UT}(b_T^2, \ldots) \equiv m_H \frac{\tilde{h}_1^{\perp 1}(b_T^2, \ldots)}{\tilde{f}_1^{[1](0)}(b_T^2, \ldots)} = m_H \frac{\tilde{A}_{4B}(-b_T^2, 0, \hat{\zeta}, \beta)}{\tilde{A}_{2B}(-b_T^2, 0, \hat{\zeta}, \beta)}$$

Analogously, Sivers shift (in a polarized hadron):

$$\langle k_y \rangle_{TU}(b_T^2, \ldots) = -m_H \frac{\widetilde{A}_{12B}(-b_T^2, 0, \hat{\zeta}, \eta v \cdot P)}{\widetilde{A}_{2B}(-b_T^2, 0, \hat{\zeta}, \eta v \cdot P)}$$

 $(\overline{z}, \eta v \cdot P)$ $(\overline{z}, \eta v \cdot P)$

Lattice setup

• Evaluate directly $\widetilde{\Phi}_{\text{unsubtr.}}^{[\Gamma]}(b, P, S, \hat{\zeta}, \mu)$

 $\equiv \frac{1}{2} \langle P, S | \ \bar{q}(0) \ \Gamma \ \mathcal{U}[0, \eta v, \eta v + b, b] \ q(b) \ |P, S \rangle$

- Euclidean time: Place entire operator at one time slice, i.e., b, ηv purely spatial
- Since generic b, v space-like, no obstacle to boosting system to such a frame!
- Parametrization of correlator in terms of \widetilde{A}_i invariants permits direct translation of results back to original frame; form desired \widetilde{A}_i ratios.
- Use variety of $P, b, \eta v$; here $b \perp P, b \perp v$ (lowest) x-moment, kinematical choices/constraints)
- Extrapolate $\eta \to \infty$, $\hat{\zeta} \to \infty$ numerically.

Challenges

- The limit $\hat{\zeta} \to \infty$: Approaching the light cone
- Discretization effects, soft factor cancellation on the lattice in TMD ratios
- Progress toward the physical pion mass

Approaching the light cone (with a pion)

Dependence of SIDIS limit on $|b_T|$

Dependence of SIDIS limit on $\hat{\zeta}$; fit function $a + b/\hat{\zeta}$

Dependence of SIDIS limit on $\hat{\zeta}$; fit function $a + b/\hat{\zeta}$

Extrapolation of SIDIS limit to $\hat{\zeta} \to \infty$

	Fit function	Full BM ratio	Contribution \widetilde{A}_4	Combined fit	RMS deviation of
		(GeV)	only (GeV)	(GeV)	combined fit (GeV)
$ b_T = 0.36\mathrm{fm}$	$a+b/\hat{\zeta}$	-0.146(26)	-0.141(36)	-0.145(25)	0.00755
$ b_T = 0.36\mathrm{fm}$	$a + b/\hat{\zeta}^2$	-0.166(16)	-0.110(22)	-0.148(15)	0.01695
$ b_T = 0.34\mathrm{fm}$	$a+b/\hat{\zeta}$	-0.145(33)	-0.112(33)	-0.128(29)	0.01466
$ b_T = 0.34\mathrm{fm}$	$a + b/\hat{\zeta}^2$	-0.157(19)	-0.084(19)	-0.121(16)	0.02315

up-quarks $m_{\pi} = 518 \,\mathrm{MeV}$ **Discretization effects:**

Comparison of

RBC/UKQCD DWF ensemble $(m_{\pi} = 297 \,\mathrm{MeV}, a = 0.084 \,\mathrm{fm})$

with clover ensemble $(m_{\pi} = 317 \,\mathrm{MeV}, a = 0.114 \,\mathrm{fm})$ produced by K. Orginos and JLab collaborators

Dependence of SIDIS limit on $|b_T|$

Dependence of SIDIS limit on $\hat{\zeta}$

Dependence on the pion mass

Dependence of SIDIS limit on $|b_T|$

Results: Sivers shift

Dependence of SIDIS limit on $\hat{\zeta}$

ζ

Progressing toward the physical pion mass

Production completed, analysis pending: RBC/UKQCD DWF ensemble at 170 MeV pion mass

2015 production: RBC/UKQCD DWF ensemble at the physical pion mass

Results: Sivers shift summary

Dependence of SIDIS limit on $\hat{\zeta}$

Experimental value from global fit to HERMES, COMPASS and JLab data, M. Echevarria, A. Idilbi, Z.-B. Kang and I. Vitev, Phys. Rev. D 89 (2014) 074013

Conclusions and Outlook

- Continued exploration of TMDs using bilocal quark operators with staple-shaped gauge link structures; exploration of challenges posed by $\hat{\zeta} \to \infty$ limit, discretization effects, physical limit.
- To avoid soft factors, multiplicative renormalization constants, considered appropriate ratios of Fourier-transformed TMDs ("shifts").
- These observables show no statistically significant variation under the considered changes of action, lattice spacing and pion mass, except at very short distances.
- Analysis underway on an RBC/UKQCD 170 MeV pion mass ensemble, production on an RBC/UKQCD ensemble at physical pion mass in preparation.
- Generalization to mixed transverse momentum / transverse position observables (Wigner functions) will give direct access to quark orbital angular momentum; production complete, analysis pending.

Accessing Bjorken-x dependence

1.0 0.8 Re \tilde{A}_2^{norm} 0.6 0.4 **__** model, |l| = 0**_** model, |l| = 1 fm 0.2 - - model, |l| = 2 fm0.0 0 -22 -3-1 3 1 $l \cdot P$ + small offsets

 $l \cdot P$: Variable Fourier conjugate to Bjorken x

(Fourier transform of) unpolarized distribution, up quarks, normalized to unity at $l \cdot P = 0$ From: B. Musch, P. Hägler, J. Negele and A. Schäfer, Phys. Rev. **D 83** (2011) 094507.

Lattice: $m_{\pi} = 625 \,\mathrm{MeV}$ Model curves: Spectator diquark model

Relation to Ji Large Momentum Effective Theory (LaMET)

Phenomenology

Lattice QCD

