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Long-range rapidity correlations



Ridge in heavy ion collisions

Heavy ion collisions, along with high-multiplicity p+p and p+A collisions,
are known to have long-range rapidity correlations, known as ‘the ridge’:

Au+Au central
3<pttl’|g<4 GeV/c




Origin of rapidity correlations

Causality demands that long-range

rapidity correlations originate at very
early times (cf. explanation of the
CMB homogeneity in the Universe)

Gavin, McLerran, Moschelli '08;
Dumitru, Gelis, McLerran, Venugopalan ‘08.



Correlations in AdS shock wave
collisions
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C'(k1, ko) ~ cosh (4 Ay)

H. Grigoryan, Yu.K. ‘10



Correlations in AdS shock wave collisions
C(k’l,kg) ~ cosh (4 Ay)

* Correlations grow with rapidity interval???

* Itis possible that higher-order corrections in shock wave
strengths will modify this result, making it closer to real life.

 However, such corrections are important at later times, and
are less likely to affect the long-range rapidity correlation...

* This could be another argument in favor of weakly-coupled
dynamics in the early stages of heavy ion collisions.



Ridge in CGC

* There are two explanations of the ridge in CGC:

— Long-range rapidity-independent fields are created at
early times, with correlations generated soon after and
with azimuthal collimation produced by radial hydro flow.
(Gavin, McLerran, Moschelli '08)

— Both long-range rapidity correlations and the azimuthal
correlations are created in the collision due to a particular
class of diagrams referred to as the “Glasma graphs”.



Glasma graphs

Generate back-to-back and
near-side azimuthal correlations.

Dumitru, Gelis, McLerran, Venugopalan ‘08.



Glasma graphs in LC gauge
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Glasma graphs are one of the many rescattering diagrams when
two nucleons with a gluon each scatter on a nuclear target.



What to calculate?

* To systematically include Glasma graphs in the CGC formalism
it would be great to solve the two-gluon inclusive production
problem in the MV model, that is, including multiple
rescatterings in both nuclei to all orders (the two produced
gluons only talk to each other through sources):
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A very hard problem!



Heavy-Light lon Collisions
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Little steps for the little feet: consider multiple rescatterings
only in one of the two nuclei.



Double gluon production
in heavy-light ion collisions



A. Setting up the problem:
geometric correlations



Two-gluon production

* We want to calculate two gluon production in A;+A, collisions
with 1 << A; << A, resumming all powers of

o Aé/?’ ~ 1 while o Ai/?’ <1

(multiple rescatterings in the target nucleus)
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 The gluons come from different nucleons in the projectile
nucleus as A,>>1 and this is enhanced compared to emission
from the same nucleon.



Applicability region
The saturation scales of the two nuclei are very different:

AQCD < Qsl < QSQ

We are working above the saturation scale of the smaller

nucleus: kT P Qsl

We thus sum all multiple rescatterings in the larger nucleus,
Q,,/k;~1, staying at the lowest non-trivial order in Q,/k; <<1.

Multiple interactions with the same nucleon in either nucleus
are suppressed by Aqp/ky <<<1.



Production cross-section

* The single- and double-inclusive cross sections can be written as

do doPA2
= [ &>’Bd°b|¥;(B —b)|?
A2k dy / Vi )| <d2l<:dyd2b>
do B o 9, 12 B B 5 doPA2 doPA2
A2k, dy, dkodys /d B by d"bz [Wr1(B — b1, B —by) <d2k1dy1d2b1 A2 kydyad2by

e Assume a large nucleus with uncorrelated
nucleons (MV/Glauber model). Then the
single- and double-nucleon wave functions
are (with T, the nuclear profile function)

U (b)|* = Ti(b)
'U;r(by, b2)|? = T1(by) T1(bs)




Geometric Correlations

e Assume uncorrelated interaction with the target:
doPA2 doPAz2 doPAz2 doPA2
<d2]€1dy1d2b1 d2k2dy2d2b2 > ~ <d2k1dy1d2b1 > <d2k‘2dy2d2b2 >

e For cross sections we have

do doPA2
= [ &’Bd*bTi(B—b
A2k dy / i ) <d2k dy d2b>
do B 9 21 12 B B doPAz doPAz
Pkydy, Phodys / TEE0 &0 1B = by Ti(B — ba) <d2k1dy1d2bl> <d2k2d92d252
d Clearly dO' dO' do‘

17,
d2k’1 dyl d2/€2 dyg d2]€1 dyl d2]{72 dy2

* Correlations due to the integration over the impact parameter B
-> Geometric correlations!



Geometric correlations: physical meaning

* Inthe same even the two nucleons are always within the
smaller nucleus diameter from each other (in transverse

nucleus.

do
d?kq dyy d?ko d
C X 1 aY1 2 AY2
do do
d2k11 dy1 d2 k‘g dy2




Geometric correlations at fixed B

¢ arezero as

do B do do
d2]€1 dyl dzk‘g dyz d2B N d2:l€1 dyl d2B d2]€2 dyg dQB

which is clear from
do

_ /dQB PoTy(B —b) {1
2kdy ! 42k dy d2b

2B d2b; &by T} (B — b)) T1(B — b do?? do?*2
_/ 1d°02 Ty (B —b1) Ty(B - 2)<d2k1dy1d2bl><d2k2dy2d2b2>

do
d2]€1 dyl d2 k'gdyg

* Note that direction of B has to be fixed (to remove the
geometric correlations), in other words the vector B should be
fixed with respect to vectors k, and k,. Maybe hard to do, but
perhaps possible.



B. Two-gluon production



(i) Single gluon production in pA



Single gluon production in pA

Model the proton by a single quark (can be easily improved upon).
The diagrams are shown below (Yu.K., A. Mueller ’97):
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Single gluon production in pA
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The gluon production cross section can be readily written as (U = Wilson line
in adjoint representation, represents gluon interactions with the target)

Ao
do? _ Qg CF /d2£IZ‘ d2y e—ik'(X—Y) x—b . Yy — b
d?k dy d?b 44 x — b2 |y—Db|?

1
N2 1

1
N2 1

1
X < TT[UXU;E] — TT[UXU;;] —

NT Tr{UsUj] + 1>



Forward dipole amplitude

* The eikonal quark propagator is given by the Wilson line

_ : A (ot o —
-chf?e_PeXp ig /daz A (7,27 =0,2)

eikonal *
quark propagator is %b\rén _by EweTAﬁson line
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(ii)) Two-gluon production
in heavy-light ion collisions



The process

O
=
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Solid horizontal lines = quarks in the incoming nucleons.
Dashed vertical line = interaction with the target.
Dotted vertical lines = energy denominators (ignore).



Amplitude squared
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This contribution to two-gluon production looks like one-gluon production
squared, with the target averaging applied to both.



Amplitude squared

o S T T

I N 2N

MW B ?%W

m ﬁ ?@% ‘ ?% ‘ These contributions to two-gluon
production contain cross-talk
‘ between the emissions from
. %

different nucleons.

(@
(&
1ggl
Yo,
K

ﬁé’z‘" ;

%%

m%% mﬁa@
%&%% %

e
s
£
£

il




Two-gluon production cross section

* “Squaring” the single gluon production cross section yields

do _ aiCE
PlerdyydPhaydyy 1675
x1—b;1  yi—bi x3—-by ys—by
X1 — b1 |y1 —bi|? [x2 —b2|?2 |y2 — by|?

1 1 1
T
X <<N2 — TriUx,UJ.] — Nz 7 [0 U] = NT TrlUs,UJ, ] + 1)

C C

/dzB d?by d?by Ty (B — by) Ty (B — by) d?zy d?yy d2ay d2yy e K- Ga—y1)—i ke (x2—y2,

1 1 1
1.
X <N2 — Tr[UxQUj,Q] - NT 1 Tr[UXQUbQ] — NZ_1 Tr[UbQU;EQ] + 1>>

e e (cf. Kovner & Lublinsky, ‘12)




Two-gluon production cross section

* The “crossed” diagrams give

dUCTOSSG 1
d2k1dy1d2k;ldy2 = 2(27)32 /d2B d?by d?by T:(B —by)T1(B — by) d?zq d2y1 42z, d2y2

>< |:e—i ki-(x1—y2)—i k2 (x2—y1) 4 et ki (x1—y2)+i k2'(X2—Y1)}

16 a2 Cr  x1—by y2—ba X2 —Dbo y1— b1
2 2N, |x1 —bi1|? |y2 —b2]? |[x2 —b2]? |y1 — by|?

X

X [Q(X1,Y1,X2,Y2) — Q(x1,y1,X2,b2) — Q(x1,y1,b2,y2) + Sa(x1,y1) — Q(x1,b1,X%2,¥y2)
+ Q(X1,b17X2,b2) + Q(leblaanYQ) - SG(Xlabl) - Q(b17YI7X27Y2) + Q(b17YI7X27b2)

+ Q(b1,y1,b2,y2) — Sa(bi1,y1) + Sa(x2,y2) — Sa(x2,b2) — Sa(ba,y2) + 1]
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Two-gluon production cross section

* The “crossed” diagrams give

dO—CTOSSG 1
d2k1dy1d2k;ldy2 - 2(27)3]2 /d2B d?by d?by T1 (B — by) Ty (B — by) d*xq d*yy d*xo d?y

>< |:e—i ki-(x1—y2)—i k2 (x2—y1) 4 et ki (x1—y2)+i k2'(X2—Y1)}

160&? CF Xl—bl y2_b2 X2—b2 Y1—b1

>< . .
2 2N, |x1 —bi1|? |y2 —b2]? |[x2 —b2]? |y1 — by|?

X [Q(X1,Y1,X2,Y2) — Q(x1,y1,X2,b2) — Q(x1,y1,b2,y2) + Sa(x1,y1) — Q(x1,b1,X%2,¥y2)
+ Q(X1,b17X2,b2) + Q(X17b1,b2>}’2) - SG(Xlabl) - Q(b17YI7X27Y2) + Q(thth,bQ)

+ Q(b1,y1,b2,y2) — Sa(bi1,y1) + Sa(x2,y2) — Sa(x2,b2) — Sa(ba,y2) + 1]

 We introduced the adjoint color-dipole and color quadrupole amplitudes:

Tr|Uy, Ul2]>

(Tr[Ux, U}, U, UL 1)



Two-gluon production: properties

do a3 CE
PhydyrPhadys | 167
x1—b1  y1—bi xp—by ys—by
x1 —b1[? |y1 —b1|?* [x2 —b2[? [|y2 —byf?

1 1 1
T
X <<N02—1 Tr[leU;:l] - NT 1 TT[leUbl] — NZ o1 Tr[UblUg;l] + 1

)
TrlUs,U{,] + 1>>

/dZB d?by d%by Ty (B — by) T1(B — by) d?xy dyy 2wy dPyq e K1 —y1) =i ke (x2—y2)

X

N2 1

* Note that if the interaction with the target factorizes,

<TT[UX1U;1] TT[UX2U;L,2]> ~ <TT[UX1U;1]> <TT[UX2U;§2]>

large—N,, large—A,

we still have the geometric correlations.

* The geometric correlations lead to non-zero cumulants! (Like everything
that depends on geometry.)



Two-gluon production: properties

do a? C% , , .
= =2 d?B d?*by d?by Ty (B — by) Ty (B — by) d?xq d?y; d?ze d?yq e~ K (x1-y1)—i ke (x2—y2)

d?k1dy1 dPkody, 1678 / 1702 T ( 1) Th( o) d"wy dyr dza d7ys €
x1—bi  yi—-bi x2-by ys—b

X . .
x1 —b1? |y1 —bi|? [x2 —b2f? [|y2—Dba|?

1 1 1 >
< { (7 T VL) = g PO — g T UL + 1) — ng
¢ ¢ ¢ h g OO ém@@

1 1 1 g
X <N2 — TriUx, U] — N? 1 Tr(Ux, UL ] — NZ 1 TriUp,Uf ] + 1)> Em

|

* |f we expand the interaction with the target to the lowest non-trivial
order, one reproduced the contribution of the ‘glasma’ graphs:

do a2 Qi (b) [ d? 1 1
= — [ @*Bd*[T1(B — b)]* =2 /
Pkydyy2kodys |, 4T / T ) k2k2 | (12)2 [ (k; —1)2 (kg +1)2 " (ky —1)2 (ko — 1)2
A
away-side correlations near-side correlations
1 1
(kl -+ k2) (kl — kg)

(cf. Dumitru, Gelis, McLerran, Venugopalan '08)



Two-gluon production: properties

* Crossed diagrams at lowest

nontrivial order
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Stronger correlations!

(k1 + ko)?



Two-gluon production: properties

do a3 CE
PhydyrPhadys | 167
x1—b1  y1—bi xp—by ys—by
x1 —b1[? |y1 —b1|?* [x2 —b2[? [|y2 —byf?

1 1 1
T
X <<N2 — Tfr’[leU;l] - NT 1 Tr[Ux, Uy, | — NZ o1 Tr[UblUg:l] + 1)

C C

/dZB d?by d%by Ty (B — by) T1(B — by) d?xy dyy 2wy dPyq e K1 —y1) =i ke (x2—y2)

1 1 1
T

* The cross section is symmetric under (ditto for the “crossed” term)

kl g k2 (just coordinate relabeling)
ko = —ks o Tr[U US| =Tr U, Uf]

* Hence the correlations generate only even azimuthal harmonics

~ cos2n (¢p1 — ¢P2)



Correlation function

May look like this (a toy model; two particles far separated in rapidity,
jets subtracted, pA and AA):

C(A9)
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Dumitru, Gelis, McLerran, Venugopalan '08; Kovner, Lublinsky ‘10;
Yu.K., D. Wertepny ‘12; Lappi, Srednyak, and Venugopalan ‘09



LHC p+Pb data from ALICE

0.88—p-Pb \'s,, = 5.02 TeV =  Data
~ (0-20%) - (60-100%) a, + a, cos(2A¢) + a, Ccos(3A0)

o
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These are high-multiplicity collisions: it is possible that quark-gluon plasma is created
in those collisions, with the hydrodynamics contributing to these correlations.

Saturation approach is lacking the odd harmonics, like cos (3 A¢), etc. Can they be
generated by corrections to the leading-order CGC calculation?



Initial vs final-state correlations: U+U

Z

x

AR /N
Y IR
I 3 i
T z i
i [
N/ \ o/
a2 \ /.

* Hydro conventional wisdom: eccentricity is
higher in side-by-side collisions, and the flow
harmonics are larger.

a)

e Saturation approach: local saturation scale
is larger in tip-on-tip collisions, making correlations

stronger as well. b)

Cm'p_on—tip(k17y17k27y2){LO _ l ~ 1.26 (for U+ U)
Cside—on—side(kla Y1, k27 y2) ’LO A

Qualitatively different behavior in the two approaches!

2 2 2
— _x= A 2
Ig(r) — pp € R? R? R2 ~




Energy (In)dependence

* “Glasma graphs” correlation function has the same number of
Q, factors in the numerator and the denominator:

J d*Bd*b[T1(B — b)[* Qsy(b)

C(k ) 7k ) X
(k1,91, ko y2)‘LO [ d?B d?by d?by T1(B — by) T1(B — ba) Q%,(b1) Q% (b2)

* Loosely-speaking, since each saturation scale is proportional

to a power of energy, 5 \

S ~ S
the energy dependence cancels, and the correlation function

is (almost) energy-independent!



C. HBT correlations



HBT diagrams

* There is another contribution coming from the “crossed” diagrams
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HBT diagrams

* They give HBT correlations (with R,,,, =0 due to Lorentz contraction)

/€1+l(

~ 6%(k; — ko)

U

* Just like the standard HBT correlations
|\I/1(k1) \Ifg(kz) —+ \Ifl(kg) \Ijz(kl)|2 — \Ifl(kl) \If2<k2) qf{(kg) \p;(kl) +c.c.+ ...

* Possibly fragmentation would break phase coherence making these
perturbative HBT correlations not observable.



Back-to-back HBT?

Note that all our formulas are symmetric under

k2 — —k2

Therefore, the HBT correlation is accompanied by the
identical back-to-back HBT correlation

~ 6%(ky + ko)

Note again that this correlation may be destroyed in
hadronization.



k--Factorization?



In search of factorization

* Since a lot of CGC ‘ridge’ phenomenology was done using a k;-
factorized expression, it is natural to try to see whether our
two-gluon production cross section can be written in a
factorized form.

 The answer is ‘yes’, but factorization does not come naturally.



Two-gluon Distribution Functions

* Unintegrated single-gluon distribution (gluon TMD) can be
defined through a (gluon) dipole operator N.

<d¢A1 (qv y) > — Cr /d2fr e—iq-r V% NG<b + T, ba y)
Aq

d?b o (2m)3
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Two-gluon Distribution Functions

* The two-gluon distributions are:

dp 2 (a1, g2, ) e\’ -

7 i = d2 d2 —1q1-'r1—1q2-r2 v2 V2 N b b b b

< d2b1 d2b2 (048(271')3) / ramre ry vro D7Q( 1+7T1,b1, b2 +ro, 27y)
2

where the double-trace and quadrupole operators are

1
= ~ U] Tr [1 = TR ]) 4, (V)
Np(x,y,z,w,Y) = (N2 1) <Tr [1 UxUy | Tr |1 = U,Uy, A, Y
C
- - Uxly) (1= U=3)]) ,, (V)
No(x,y,z,w,Y) = T 1 <Tr [(1 UxUy ) (1= ULUy, Ay Y
C
OOOOOOOOO GO0000000000000000
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k--Factorization

e After some algebra the two-gluon inclusive production cross
section can be written in a factorized form:

do 20\ 1 dpa, (d1,y =0) doa, (qz,y = 0)
— : d*B d*by d*b /d2 d’ L L
k1 dyy 2k dys ( Cr ) k2 3 / LER R TR AT EB D) [/, \  #B-by) /i

d¢£2(q1_k1’q2_k27y) K(blab27k17k27q17q2) dgbgg((h _k17q2_k27y)
X +
d2by d?by "

NZ -1 2, by >A ke = _kQ)]
with a somewhat involved (but known) coefficient function K.

* The expression is rather convoluted, and the function K
depends on the nucleons’ positions... The expression is
different from what was used in phenomenology.



Conclusions

We completed a calculation of the two-gluon inclusive production cross
section in nuclear collisions including saturation effects in one nucleus to all
orders (heavy-light ion collisions).

Correlations we see:
— Geometric correlations v/
— HBT correlations (along with b2b HBT ones)
— Away-side correlations v/

— Near-side long-range rapidity correlations v/
(v = long-range in rapidity)

Near- and away-side correlations are identical to all orders in saturation
effects: this is mainly consistent with the p+Pb data from LHC. Odd
harmonics are missing.

Long-range rapidity correlations are (almost) energy-independent.
k.-factorization can be obtained with 2 types of double-gluon distributions.

It seems like geometric correlations are hard to remove by cumulants, since
they depend on non-local geometry.



Backup Slides



Ridge in heavy ion collisions

 Heavy ion collisions, along with high-multiplicity p+p and p+A collisions,
are known to have long-range rapidity correlations, known as ‘the ridge’:




This conclusion is consistent with the data

Long-Range Rapidity Correlations in Heavy-Light lon Collisions

Yuri V. Kovchegov, Douglas E. Wertepny
(Submitted on 5 Dec 2012)

We study two-particle long-range rapidity correlations arising in the early stages of heavy ion collisions in the
saturation/Color Glass Condensate framework, assuming for simplicity that one colliding nucleus is much larger
than the other. We calculate the two-gluon production cross section while including all-order saturation effects
in the heavy nucleus with the lowest-order rescattering in the lighter nucleus. We find four types of correlations
in the two-gluon production cross section: (i) geometric correlations, (ii) HBT correlations, (iii) back-to-back
correlations, and (iv) near-side azimuthal correlations which are long-range in rapidity. The geometric
correlations (i) are due to the fact that nucleons are correlated by simply being confined within the same nucleus

dependence. Somewhat surprisingly, long-range rapidity correlations (iii) and (iv) have exactly the same
amplitudes along with azimuthal and rapidity shapes: one centered around \Delta \phi = \pi\ with the other one
centered around \Delta \phi = 0 (here \Delta \phi\ is the azimuthal angle between the two produced gluons).

We thus observe that the early-time CGC dynamics in nucleus-nucleus collisions generates azimuthal non-flow
correlations which are qualitatively different from jet correlations by being long-range in rapidity. If strong
enough, they have the potential of mimicking the elliptic (and higher-order even-harmonic) flow in the
di-hadron correlators: one may need to take them into account in the experimental determination of the flow
observables.



This conclusion is consistent with the data

Long-range angular correlations on the near and away side in
p-Pb collisions at sqrt(sNN) = 5.02 TeV

ALICE Collaboration

(Submitted on 10 Dec 2012)

Angular correlations between charged trigger and associated particles are measured by the ALICE detector in
p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges
within 0.5 < pT,assoc < pT,trig < 4 GeV/c. The correlations are measured over two units of pseudorapidity and
full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger
particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed
when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity
events. The excess on the near-side is qualitatively similar to that recently reported by the CMS collaboration,
while the excess on the away-side is reported for the first time. The two-ridge structure projected onto
azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and
away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties
for all studied event multiplicity and pT bins, and the widths show no significant evolution with event multiplicity

or pT. These findings suggest that the near-side ridge is accompanied by an essentially identical away-side
ridge.




