Explore Parton Distributions from Lattice QCD Calculations

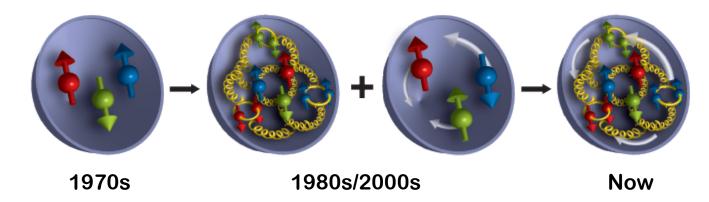
Jianwei Qiu
Brookhaven National Laboratory
Stony Brook University

Based on work done with Tomomi Ishikawa, Yan-Qing Ma, Shinsuke Yoshida, ... arXiv:1404.6860, 1412.2688, ... and work by many others, ...

Workshop of the APS Topical Group on Hadronic Physics (GHP2015)
Hilton Baltimore - Johnson, Baltimore, MD, April 8-10, 2015

Nucleon's internal structure

☐ Our understanding of the nucleon evolves

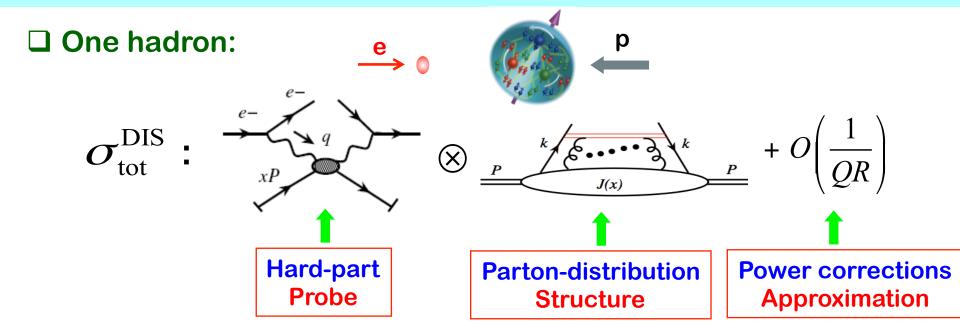


Nucleon is a strongly interacting, relativistic bound state of quarks and gluons

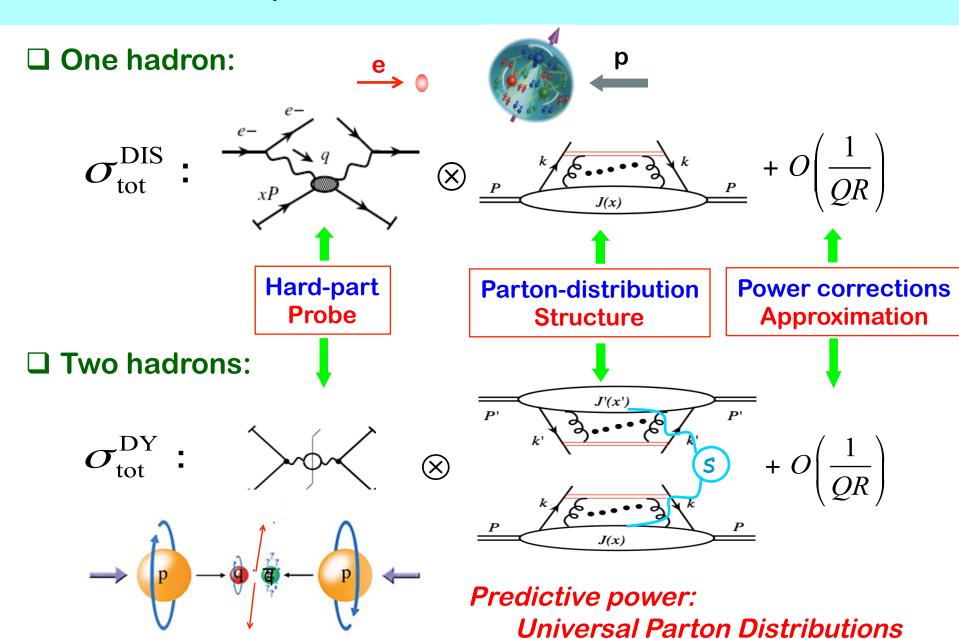
- QCD bound states:
 - Neither quarks nor gluons appear in isolation!
 - Understanding such systems completely is still beyond the capability of the best minds in the world
- ☐ The great intellectual challenge:

Probe nucleon structure without "seeing" quarks and gluons?

Hard probe and QCD factorization



Hard probe and QCD factorization

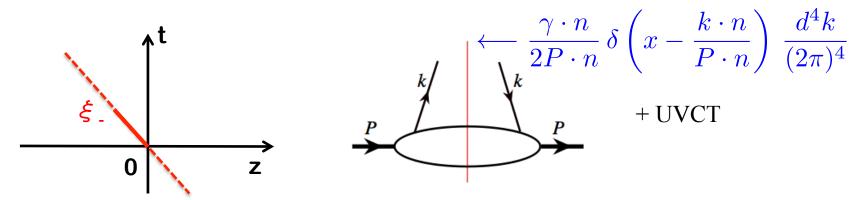


Operator definition of PDFs

☐ Quark distribution (spin-averaged):

$$q(x,\mu^2) = \int \frac{d\xi_-}{4\pi} e^{-ix\xi_- P_+} \langle P | \overline{\psi}(\xi_-) \gamma_+ \exp\left\{-ig \int_0^{\xi_-} d\eta_- A_+(\eta_-)\right\} \psi(0) |P\rangle + \text{UVCT}$$

☐ Cut-vertex notation:



PDFs are not direct physical observables, such as cross sections!

But, well-defined in QCD and process independent!

- \square Parton interpretation emerges in n.A = 0 gauge
- ☐ Independent of hadron momentum *P*
- ☐ Simplest of all parton correlation functions of the hadron

Global QCD analyses – a successful story

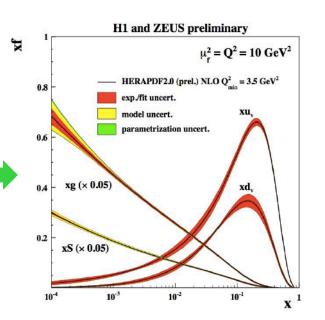
- ☐ World data with "Q" > 2 GeV
 - + Factorization:

DIS:
$$F_2(x_B, Q^2) = \sum_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \Sigma_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



Global QCD analyses – a successful story

■ World data with "Q" > 2 GeV

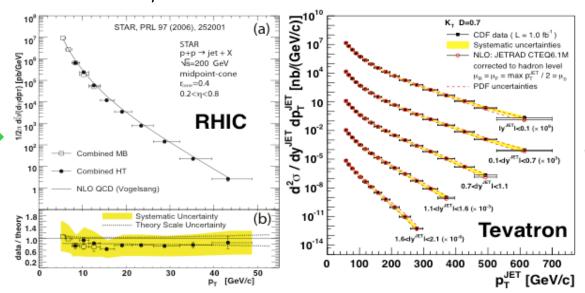
+ Factorization:

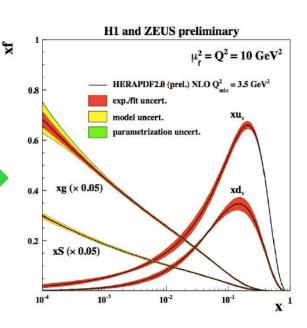
DIS:
$$F_2(x_B, Q^2) = \sum_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

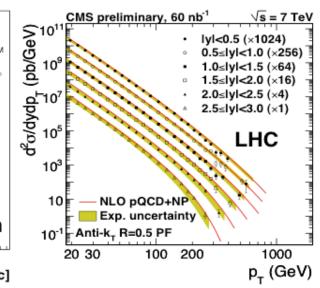
H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

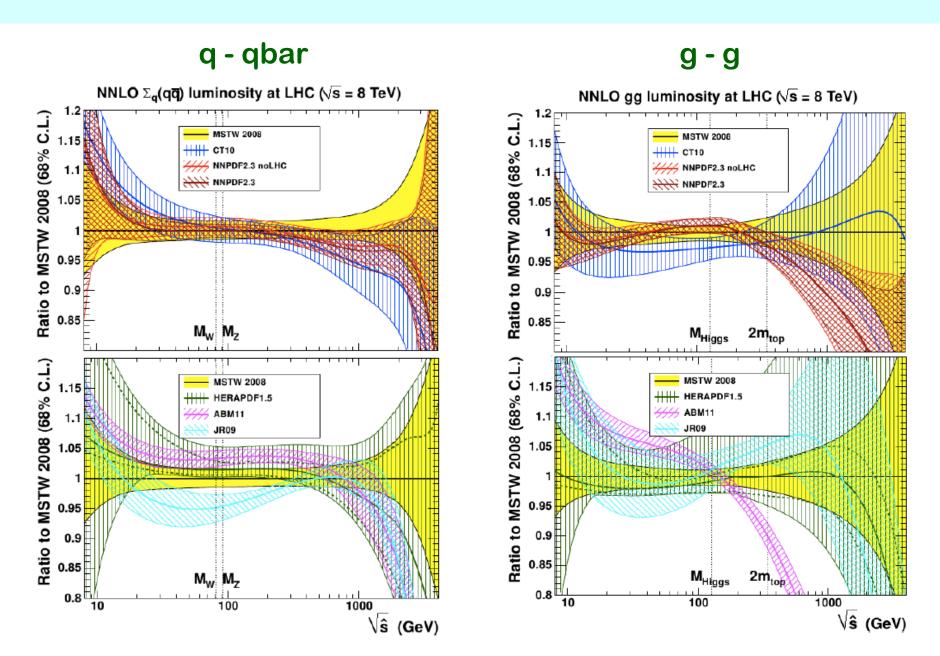
$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \sum_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$







Partonic luminosities



PDFs at large x

\square Testing ground for hadron structure at $x \rightarrow 1$:

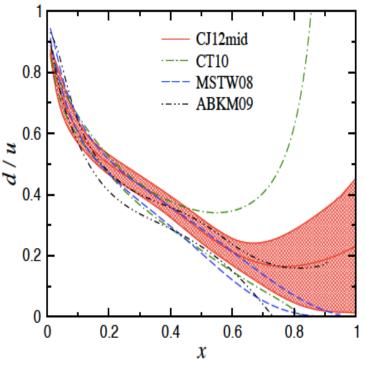
$$\Rightarrow d/u \rightarrow 1/2$$

$$\Rightarrow d/u \rightarrow 0$$

$$\Rightarrow d/u \rightarrow 1/5$$

$$\Rightarrow \ d/u \to \frac{4\mu_n^2/\mu_p^2-1}{4-\mu_n^2/\mu_p^2} \ \ \begin{array}{c} \text{Local quark-hadron} \\ \text{duality} \end{array}$$

$$\approx \ 0.42$$



PDFs at large x

 \square Testing ground for hadron structure at $\times \rightarrow 1$:

$$d/u \rightarrow 1/2$$

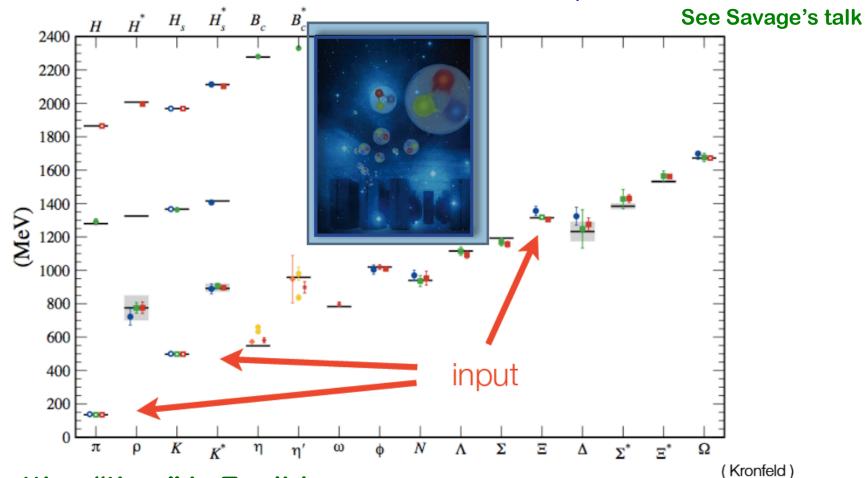
$$\Rightarrow d/u \rightarrow 0$$

$$d/u \rightarrow 1/5$$

Can lattice QCD help?

Lattice QCD

☐ Hadron masses: Predictions with limited inputs



 \Box Lattice "time" is Euclidean: $\tau = i t$

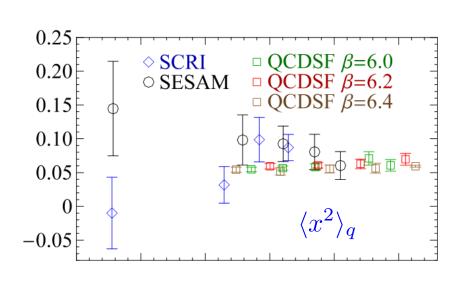
Cannot calculate PDFs directly, whose operators are time-dependent

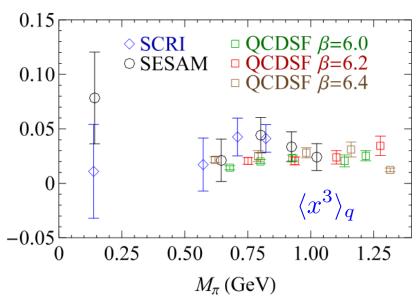
PDFs from lattice QCD

Moments of PDFs – matrix elements of local operators

$$\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n \, q(x, \mu^2)$$

■ Works, but, hard and limited moments:





Dolgov et al., hep-lat/0201021

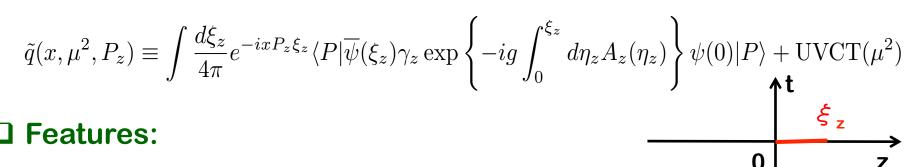
Gockeler et al., hep-ph/0410187

Limited moments – hard to get the full x-dependent distributions!

From quasi-PDFs to PDFs (Ji's idea)

☐ "Quasi" quark distribution (spin-averaged):

Ji, arXiv:1305.1539



- Quark fields separated along the z-direction not boost invariant!
- Perturbatively UV power divergent: $\propto (\mu/P_z)^n$ with n>0 renormalizable?
- Quasi-PDFs → Normal PDFs when P, →∞
- Quasi-PDFs could be calculated using standard lattice method
- □ Proposed matching:

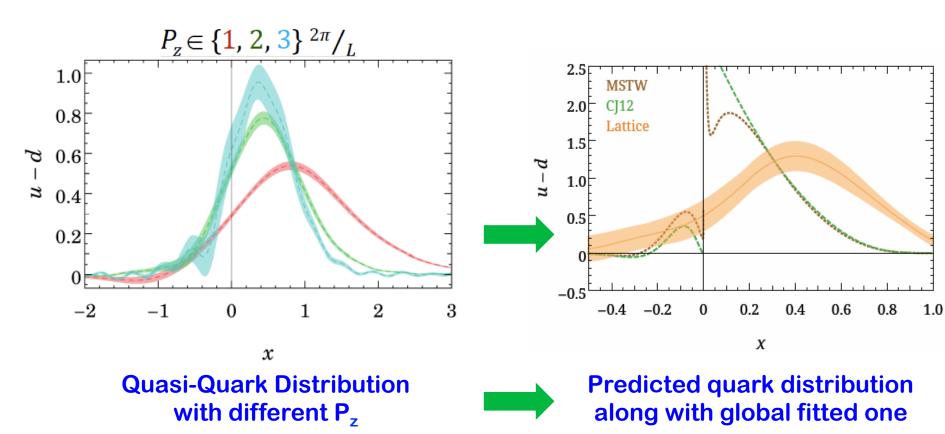
$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

- Size of O(1/P_z²) terms, non-perturbative subtraction of power divergence
- Mixing with lower dimension operators cannot be treated perturbatively, ...

Lattice calculation of quasi-PDFs

Lin *et al.*, arXiv:1402.1462

□ Exploratory study:

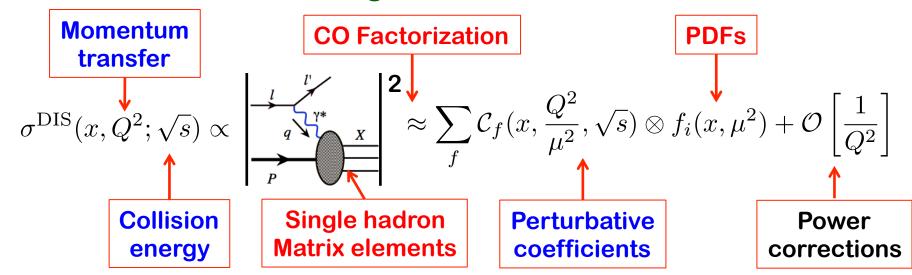


Matching – taking into account:

Target mass: $(M_N/P_z)^2$ High twist: $a+b/P_z^2$

Our observation

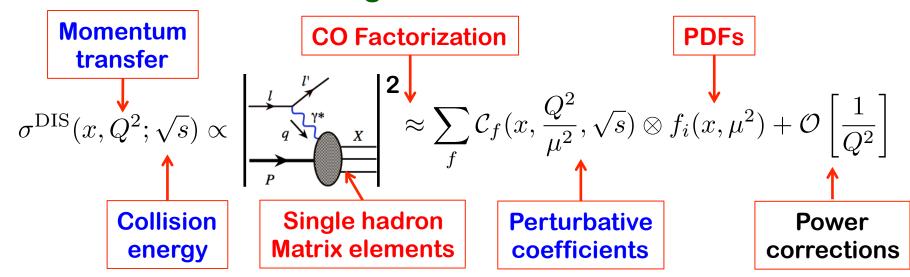
□ QCD factorization of single-hadron cross section:



- PDFs are UV and IR finite, but, absorb perturbative CO divergence!
- With a large momentum transfer, PDFs completely cover all leading power
 CO divergence of single hadron matrix elements

Our observation

□ QCD factorization of single-hadron cross section:



- PDFs are UV and IR finite, but, absorb perturbative CO divergence!
- With a large momentum transfer, PDFs completely cover all leading power
 CO divergence of single hadron matrix elements
- □ Collinear divergences are from the region when $k_T \rightarrow 0$:

Leading power perturbative CO divergences of single hadron matrix elements are logarithmic, $\propto \int dk_T^2/k_T^2$, and are the same for both Minkowski and Euclidean time

Our ideas

☐ Lattice QCD can calculate "single" hadron matrix elements:

Off-diagonal for GPDs

□ Collinear factorization:

Ma and Qiu, arXiv:1404.6860 1412.2688

$$\widetilde{\sigma}(\widetilde{x}, P_z; \mu^2)_{\mathbb{E}} = \Sigma_f \int_0^1 \frac{dx}{x} \, \mathcal{C}_f\left(\frac{\widetilde{x}}{x}, \frac{\overline{\mu}^2}{\mu^2}, \alpha_s; P_z\right) \left(f(x, \overline{\mu}^2)\right) + \mathcal{O}\left[\frac{1}{\mu^{\alpha}}\right]$$

- \Rightarrow Perturbatively, $\widetilde{\sigma}(\widetilde{x},P_z;\mu^2)$ and $f(x,\overline{\mu}^2)$ have the same CO divergence
- \diamond Matching coefficients, C_f , are IR safe and perturbatively calculable
- \Rightarrow P_z > μ is finite

Differences between Ji's approach and ours

☐ For the quasi-PDFs:

♦ Ji's approach – high P_z effective field theory:

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

♦ Our approach – QCD collinear factorization:

Ma and Qiu, arXiv:1404.6860 1412.2688

$$\tilde{q}(x,\mu^2,P_z) = \sum_f \int_0^1 \frac{dy}{y} \, \mathcal{C}_f\left(\frac{x}{y},\frac{\mu^2}{\bar{\mu}^2},P_z\right) f(y,\bar{\mu}^2) + \mathcal{O}\left(\frac{1}{\mu^2}\right)$$

Parameter like \sqrt{s}

Factorization scale

High twist **Power corrections**

$$\sigma^{\text{DIS}}(x, Q^2; \sqrt{s}) \propto \left| \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \right|^{\gamma*} \approx \sum_{f} \mathcal{C}_f(x, \frac{Q^2}{\mu^2}, \sqrt{s}) \otimes f_i(x, \mu^2) + \mathcal{O}\left[\frac{1}{Q^2}\right] \end{array}$$

☐ Our approach goes beyond quasi-PDFs:

All lattice calculable single hadron matrix elements with a large momentum transfer – "factorization"

Extract PDFs from lattice "cross sections"

☐ Lattice "cross section":

$$\widetilde{\sigma}_{\rm E}^{\rm Lat}(\widetilde{x}, 1/a, P_z) \propto {\rm F.T. of } \langle P_z | \mathcal{O}(\overline{\psi}, \psi, A) | P_z \rangle + {\rm UVCT}(1/a)$$

- ♦ Its continuum limit is UV renormalizable
- ♦ It is calculable in lattice QCD with an Euclidean time, "E"
- ♦ It is infrared (IR) safe, calculated in lattice perturbation theory
- \diamond All CO divergences of its continuum limit ($a \to 0$) can be factorized into the normal PDFs with perturbatively calculable hard coefficients

"Collision energy" $P_z\sim "\sqrt{s}"$ "rapidity" $\tilde x\sim "y"$ "Hard momentum transfer" $1/a\sim \tilde \mu\sim "Q"$

□ UV renormalization:

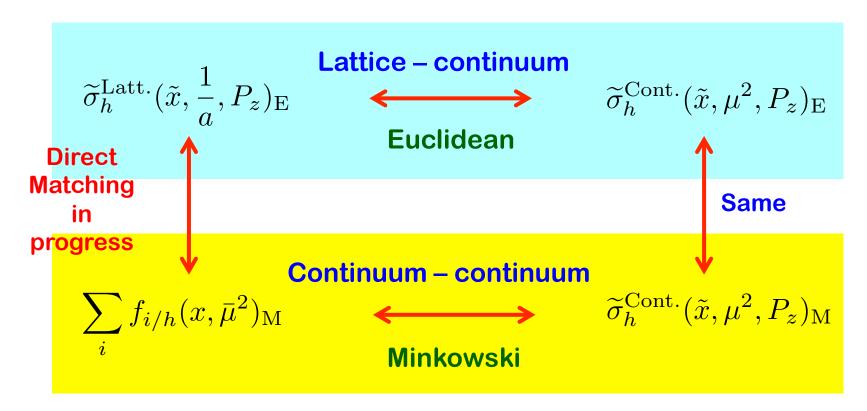
- \diamond No UVCT needed if $\mathcal{O}(\overline{\psi},\psi,A)$ is made of conserved currents
- ♦ The quasi-PDFs are not made of conserved currents UVCT needed
- □ CO Factorization IR safe matching coefficients:

$$\widetilde{\sigma}_{\mathrm{E}}^{\mathrm{Lat}}(\widetilde{x}, \frac{1}{a}, P_z) \approx \sum_{i} \int_{0}^{1} \frac{dx}{x} f_{i/h}(x, \mu^2) \widetilde{\mathcal{C}}_{i}(\frac{\widetilde{x}}{x}, \frac{1}{a}, \mu^2, P_z)$$

QCD Global analysis of lattice data

Matching overview

□ Goal: Match lattice "cross sections" to normal PDFs



- ♦ One-loop matching in continuum Minkowski space has been done Ji (2013), Xiong et. al. (2013), Ma and Qiu (2014) [all flavors]
- ♦ One-loop matching between lattice and continuum in Euclidean space Ishikawa, Qiu and Yoshida (just completed, paper is in preparation)

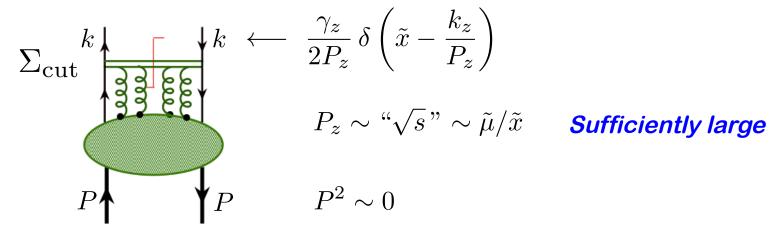
Case study – factorization of quasi-PDFs

☐ The "Quasi-quark" distribution, as an example:

Ma and Qiu, arXiv:1404.6860 1412.2688

$$\tilde{q}(\tilde{x}, \tilde{\mu}^2, P_z) = \int \frac{dy_z}{4\pi} e^{i\tilde{x}P_z y_z} \langle P | \overline{\psi}(y_z) \gamma_z \exp\left\{-ig \int_0^{y_z} dy_z' A_z(y_z')\right\} \psi(0) | P \rangle$$

 \Leftrightarrow Feynman diagram representation: $\Phi_{n_z}^{(f,a)}(\{\xi_z,0\}) = \Phi_{n_z}^{\dagger(f,a)}(\{\infty,\xi_z\}) \Phi_{n_z}^{(f,a)}(\{\infty,0\})$

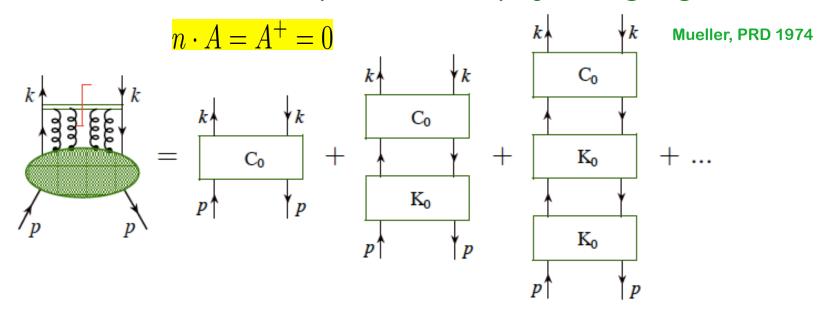


- **♦ Like PDFs, it is IR finite**
- Like PDFs, it is UV divergent, but, worse (linear UV divergence)
 Potential trouble! mixing with the Log UV of PDFs?
- Like PDFs, it is CO divergent factorizes CO divergence into PDFs Show to all orders in perturbation theory

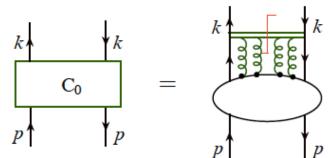
All order QCD factorization of CO divergence

Ma and Qiu, arXiv:1404.6860

Generalized ladder decomposition in a physical gauge



- $lue{}$ $C_0,\ K_0$:2PI kernels
 - **♦ Only process dependence:**

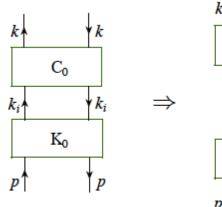


♦ 2PI are finite in a physical gauge for fixed k and p:

All order QCD factorization of CO divergence

☐ 2PI kernels – Diagrams:

lacksquare Ordering in virtuality: $P^2 \ll k^2 \lesssim ilde{\mu}^2$ – Leading power in $rac{1}{ ilde{\mu}}$



$$K_0$$
 K_0
 K_0
 K_0
 K_0
 K_0
 K_0
 K_0
 K_0
 K_0

$$\leftarrow \frac{1}{2}\gamma \cdot p$$

$$\leftarrow \frac{\gamma \cdot n}{2p \cdot n} \delta\left(x_i - \frac{k_i \cdot n}{p \cdot n}\right) + \text{power suppressed}$$

Cut-vertex for normal quark distribution Logarithmic UV and CO divergence

☐ Renormalized kernel - parton PDF:

$$K \equiv \int d^4k_i \,\delta\left(x_i - \frac{k^+}{p^+}\right) \operatorname{Tr}\left[\frac{\gamma \cdot n}{2p \cdot n} \,K_0 \,\frac{\gamma \cdot p}{2}\right] + \operatorname{UVCT}_{\operatorname{Logarithmic}}$$

All order QCD factorization of CO divergence

Projection operator for CO divergence:

$$\widehat{\mathcal{P}}\,K$$
 Pick up the logarithmic CO divergence of $extcolor{k}$

Factorization of CO divergence:

$$\begin{split} \tilde{f}_{q/p} &= \lim_{m \to \infty} C_0 \sum_{i=0}^m K^i + \text{UVCTs} \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=0}^{m-1} K^i (1 - \widehat{\mathcal{P}}) K \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=1}^m \left[(1 - \widehat{\mathcal{P}}) K \right]^i \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \end{split}$$

$$\widetilde{f}_{q/P} = \left[C_0 \frac{1}{1 - (1 - \widehat{\mathcal{P}})K} \right]_{\text{ren}} \left[\frac{1}{1 - \widehat{\mathcal{P}}K} \right]$$
Normal Quark distribution

CO divergence free

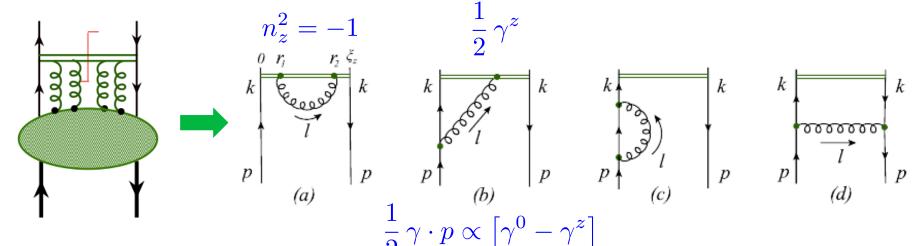
All CO divergence of quasi-quark distribution

$$\tilde{f}_{i/h}(\tilde{x},\tilde{\mu}^2,P_z) \approx \sum_{j} \int_0^1 \frac{dx}{x} \, \mathcal{C}_{ij}(\frac{\tilde{x}}{x},\tilde{\mu}^2,P_z) \, f_{j/h}(x,\mu^2)$$
UV finite?

UV renormalization

Ma and Qiu, arXiv:1404.6860, ...

☐ UV divergences (difference in gauge link):



□ Renormalization:

$$\left[C_0 \frac{1}{1 - (1 - \hat{\mathcal{P}})K}\right]_{\text{ron}} \equiv C_0 \frac{1}{1 - (1 - \hat{\mathcal{P}})K} + \text{UVCTs}$$

In coordinate space:

Independence!

 \diamond Power divergence: Diagram (a) – independent of ξ_z

Removed by "mass" renormalization of a test particle – the gauge link

♦ Left-over log divergence:

Dotsenko and Vergeles NPB, 1980)

Dimensional regularization – ξ_z independence of 1/ ε – finite CTs

 \Rightarrow Log(ξ_{7}) – term: Artifact of dimensional regularization

One-loop example: quark → quark

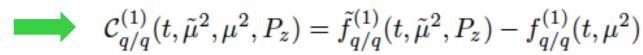
Ma and Qiu, arXiv:1404.6860

■ Expand the factorization formula:

$$\tilde{f}_{i/h}(\tilde{x}, \tilde{\mu}^2, P_z) \approx \sum_{i} \int_0^1 \frac{dx}{x} \, \mathcal{C}_{ij}(\frac{\tilde{x}}{x}, \tilde{\mu}^2, P_z) \, f_{j/h}(x, \mu^2)$$

To order α_s :

$$\tilde{f}_{q/q}^{(1)}(\tilde{x}) = f_{q/q}^{(0)}(x) \otimes \mathcal{C}_{q/q}^{(1)}(\tilde{x}/x) + f_{q/q}^{(1)}(x) \otimes \mathcal{C}_{q/q}^{(0)}(\tilde{x}/x)$$

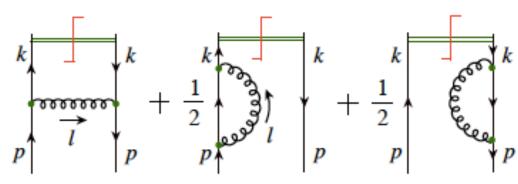


☐ Feynman diagrams:

Same diagrams for both

$$ilde{f}_{q/q}$$
 and $f_{q/q}$

But, in different gauge:



$$n_z \cdot A = 0$$
 for $\tilde{f}_{q/q}$

$$n \cdot A = 0$$
 for $f_{q/q}$

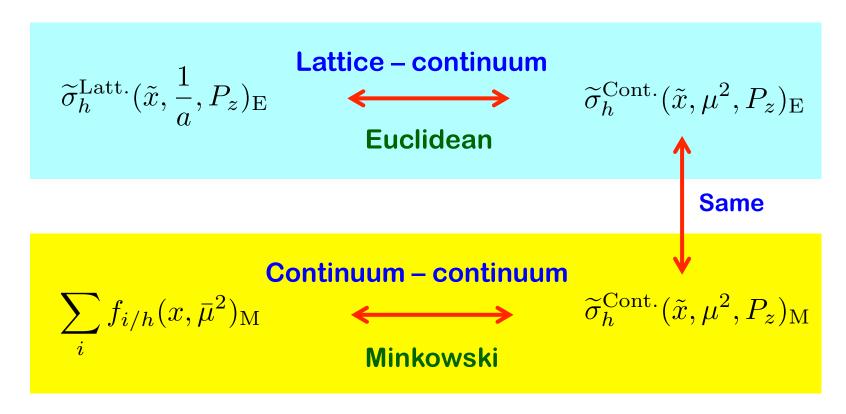
□ Gluon propagator in n_z . A = 0:

$$\tilde{d}^{\alpha\beta}(l) = -g^{\alpha\beta} + \frac{l^{\alpha}n_z^{\beta} + n_z^{\alpha}l^{\beta}}{l_z} - \frac{n_z^2 l^{\alpha}l^{\beta}}{l_z^2}$$

$$\quad \text{with} \quad n_z^2 = -1$$

Matching overview

☐ Goal: Match lattice "cross sections" to normal PDFs



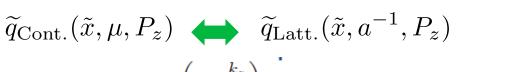
- ♦ One-loop matching in continuum Minkowski space has been done Ji (2013), Xiong et. al. (2013), Ma and Qiu (2014) [all flavors]
- One-loop matching between lattice and continuum in Euclidean space Ishikawa, Qiu and Yoshida (just completed, paper is in preparation)

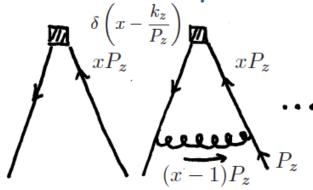
Match lattice to continuum

☐ Momentum space vs. coordinate space:

$$\widetilde{q}(\widetilde{x}, \mu, P_z) = \int \frac{d\delta_z}{2\pi} e^{-i\widetilde{x}P_z\delta_z} \langle \mathcal{N}(P_z) | \widetilde{O}(\delta_z) | \mathcal{N}(P_z) \rangle$$
$$\widetilde{O}(\delta_z) = \overline{\psi}(\delta_z) \gamma^z U_z(\delta_z, 0) \psi(0)$$

Momentum space

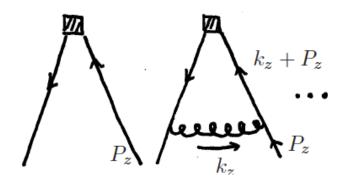




- \Rightarrow z-component of the momentum is restricted to be xP_z .
- Loop-momentum becomes3-dimensional

Coordinate space

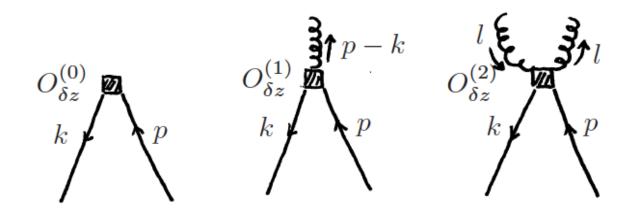
$$\widetilde{O}_{\mathrm{Cont.}}(\delta_z) \iff \widetilde{O}_{\mathrm{Latt.}}(\delta_z)$$



- No restriction on momentum.
- ♦ Loop-momentum is 4-dimensional.

Feynman rule in a covariant gauge

☐ Tree, one-gluon, two-gluon (at one-loop level):



$$O_{\delta z}^{(0)}(p,k) = \gamma_z \delta(p-k)e^{-ip_z \delta z}$$

$$O_{\delta z}^{(1)}(p,k) = ig\gamma_z \frac{e^{-ip_z \delta z} - e^{-ik_z \delta z}}{i(p-k)_z}$$
There is no pole.
$$O_{\delta z}^{(2)}(p,k) = ig\gamma_z \frac{e^{-ip_z \delta z} - e^{-ik_z \delta z}}{i(p-k)_z}$$

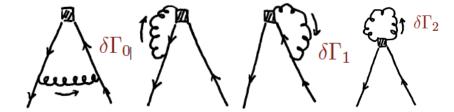
$$O_{\delta z}^{(2)}(p,k) = ig\gamma_z \frac{e^{-ip_z \delta z} - e^{-ik_z \delta z}}{i(p-k)_z}$$

$$O_{\delta z}^{(2)}(p,k,l) = -g^2 \gamma_z \delta(p-k) e^{-ip_z \delta z} \left(\frac{1 - e^{il_z \delta z}}{l_z^2} - \frac{\delta z}{il_z} \right)$$

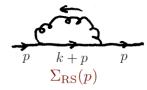
Matching lattice to continuum at one-loop

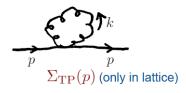
☐ One-loop matching coefficients:

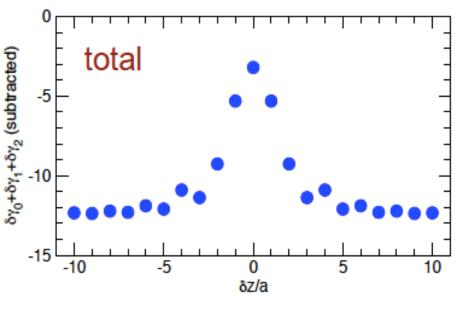
$$\delta\Gamma_{\rm cont} - \delta\Gamma_{\rm latt} \equiv \frac{g^2}{16\pi^2} C_F \gamma_z \delta\gamma$$



Wave function part is not included:







(It is the same as usual local operator case)

☐ Comments:

- ♦ Realistic lattice fermion should be used in the actual matching factor
- ♦ Other lattice actions and the link smearing can be easily implemented

Summary and outlook

□ "lattice cross sections" = single hadron matrix elements calculable in Lattice QCD and factorizable in QCD

Key difference from Ji's idea:

Expansion in $1/\mu$ instead of that in $1/P_z$

☐ Extract PDFs by global analysis of data on "Lattice x sections".

Same should work for other distributions (TMDs, GPDs)

$$\widetilde{\sigma}_{\mathrm{E}}^{\mathrm{Lat}}(\widetilde{x}, \frac{1}{a}, P_z) \approx \sum_{i} \int_{0}^{1} \frac{dx}{x} f_{i/h}(x, \mu^2) \widetilde{\mathcal{C}}_{i}(\frac{\widetilde{x}}{x}, \frac{1}{a}, \mu^2, P_z)$$

☐ Conservation of difficulties – complementarity:

High energy scattering experiments

- less sensitive to large x parton distribution/correlation
- "Lattice factorizable cross sections"
 - more suited for large x PDFs

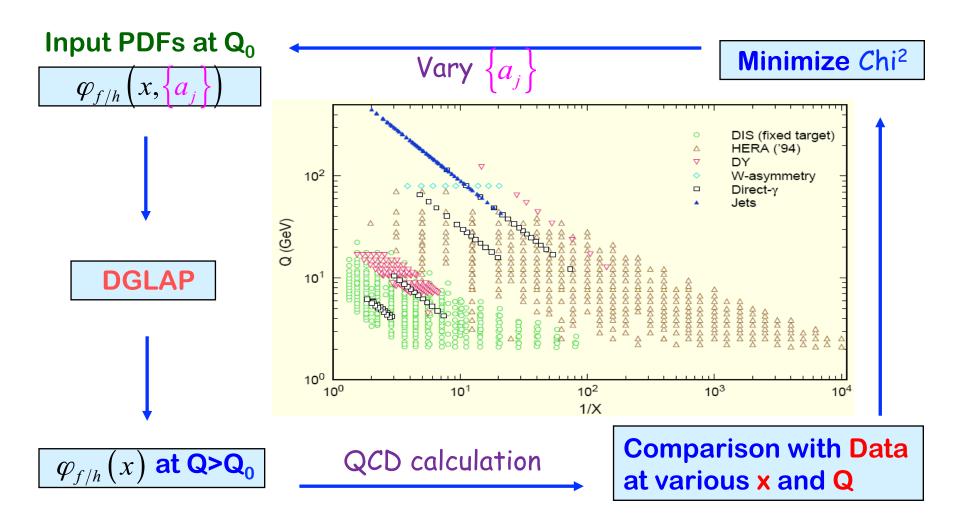
Great potential: PDFs of neutron, PDFs of mesons, ...

□ Lattice QCD can calculate PDFs, but, more works are needed!

Thank you!

BACKUP SLIDES

Global QCD analysis – the machinery



Procedure: Iterate to find the best set of {a_i} for the input DPFs

"Quasi-PDFs" have no parton interpretation

□ Normal PDFs conserve parton momentum:

$$M = \sum_{q} \left[\int_{0}^{1} dx \, x f_{q}(x) + \int_{0}^{1} dx \, x f_{\bar{q}}(x) \right] + \int_{0}^{1} dx \, x f_{g}(x)$$

$$= \sum_{q} \int_{-\infty}^{\infty} dx \, x f_{q}(x) + \frac{1}{2} \int_{-\infty}^{\infty} dx \, x f_{g}(x)$$

$$= \frac{1}{2(P^{+})^{2}} \langle P | T^{++}(0) | P \rangle = \text{constant}$$
Energy-momentum tensor

☐ "Quasi-PDFs" do not conserve "parton" momentum:

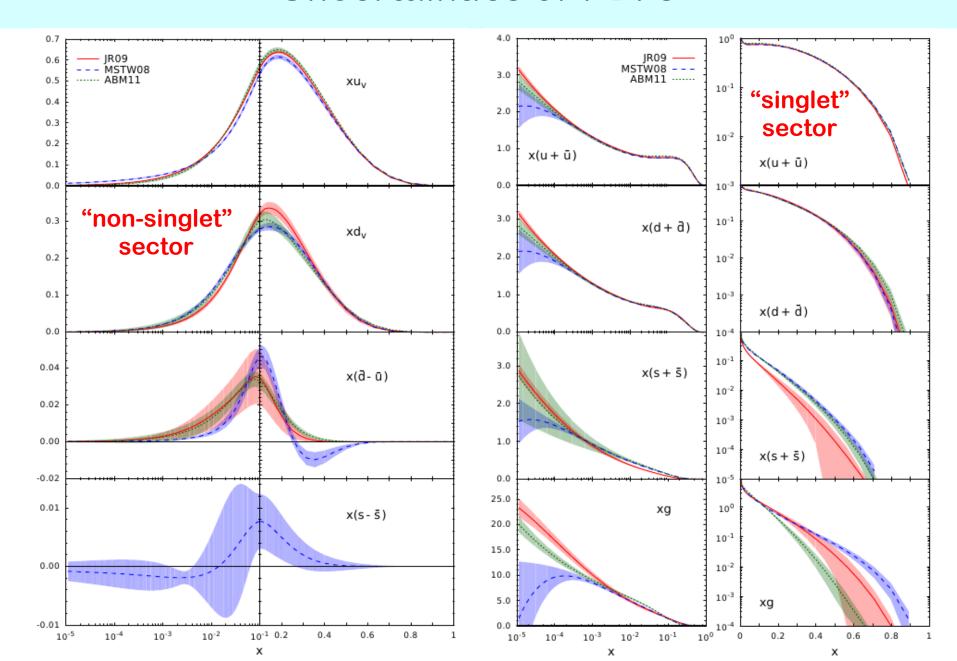
$$\widetilde{\mathcal{M}} = \sum_{q} \left[\int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{q}(\tilde{x}) + \int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{\bar{q}}(\tilde{x}) \right] + \int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{g}(\tilde{x})$$

$$= \sum_{q} \int_{-\infty}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{q}(\tilde{x}) + \frac{1}{2} \int_{-\infty}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{g}(\tilde{x})$$

$$= \frac{1}{2(P_{z})^{2}} \langle P | \left[T^{zz}(0) - g^{zz}(...) \right] | P \rangle \neq \text{constant}$$

Note: "Quasi-PDFs" are not boost invariant

Uncertainties of PDFs



Lattice QCD

☐ Formulated in the discretized Euclidean space:

$$S^{f} = a^{4} \sum_{x} \left[\frac{1}{2a} \sum_{\mu} \left[\bar{\psi}(x) \gamma_{\mu} U_{\mu}(x) \psi(x + a\hat{\mu}) - \bar{\psi}(x + a\hat{\mu}) \gamma_{\mu} U_{\mu}^{\dagger}(x) \psi(x) \right] + m \bar{\psi}(x) \psi(x) \right]$$

$$S^{g} = \frac{1}{g_{0}^{2}} a^{4} \sum_{x,\mu\nu} \left[N_{c} - \text{ReTr}[U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)] \right]$$
$$U_{\mu}(x) = e^{-igaT^{a}A_{\mu}^{a}(x+\frac{1}{2})}$$

■ Boundary condition is imposed on each field in finite volume:

Momentum space is restricted in finite Brillouin zone: $\left\{-\frac{\pi}{a}, \frac{\pi}{a}\right\}$

Lattice QCD is an Ultra-Violet (UV) finite theory

Lattice action is not unique, above action is the simplest one!

Many implementations were proposed to reduce the discretization error

One-loop "quasi-quark" distribution in a quark

Ma and Qiu, arXiv:1404.6860

☐ Real + virtual contribution:

$$\begin{split} \tilde{f}_{q/q}^{(1)}(\tilde{x},\tilde{\mu}^2,P_z) &= C_F \frac{\alpha_s}{2\pi} \frac{(4\pi)^\epsilon}{\Gamma(1-\epsilon)} \int_0^{\tilde{\mu}^2} \frac{dl_\perp^2}{l_\perp^{2+2\epsilon}} \int_{-\infty}^{+\infty} \frac{dl_z}{P_z} \left[\delta \left(1 - \tilde{x} - y \right) - \delta \left(1 - \tilde{x} \right) \right] \left\{ \frac{1}{y} \left(1 - y + \frac{1-\epsilon}{2} y^2 \right) \right. \\ &\times \left[\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1-y}{\sqrt{\lambda^2 + (1-y)^2}} \right] + \frac{(1-y)\lambda^2}{2y^2 \sqrt{\lambda^2 + y^2}} + \frac{\lambda^2}{2y\sqrt{\lambda^2 + (1-y)^2}} + \frac{1-\epsilon}{2} \frac{(1-y)\lambda^2}{[\lambda^2 + (1-y)^2]^{3/2}} \right\} \end{split}$$

where
$$y = l_z/P_z$$
, $\lambda^2 = l_\perp^2/P_z^2$, $C_F = (N_c^2 - 1)/(2N_c)$

☐ Cancelation of CO divergence:

$$\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} = 2\theta(0 < y < 1) - \left[\operatorname{Sgn}(y) \frac{\sqrt{\lambda^2 + y^2} - |y|}{\sqrt{\lambda^2 + y^2}} + \operatorname{Sgn}(1 - y) \frac{\sqrt{\lambda^2 + (1 - y)^2} - |1 - y|}{\sqrt{\lambda^2 + (1 - y)^2}} \right]$$

Only the first term is CO divergent for 0 < y < 1, which is the same as the divergence of the normal quark distribution – necessary!

□ UV renormalization:

Different treatment for the upper limit of $~l_{\perp}^2~$ integration - "scheme"

Here, a UV cutoff is used – other scheme is discussed in the paper

One-loop coefficient functions

Ma and Qiu, arXiv:1404.6860

h(t)

MS scheme for $f_{q/q}(x,\mu^2)$:

$$\mathcal{C}_{q/q}^{(1)}(t,\tilde{\mu}^2,\mu^2,P_z) = \tilde{f}_{q/q}^{(1)}(t,\tilde{\mu}^2,P_z) - f_{q/q}^{(1)}(t,\mu^2)$$

$$\begin{split} \frac{\mathcal{C}_{q/q}^{(1)}(t)}{C_F \frac{\alpha_s}{2\pi}} &= \left[\frac{1+t^2}{1-t} \ln \frac{\tilde{\mu}^2}{\mu^2} + 1 - t\right]_+ + \left[\frac{t\Lambda_{1-t}}{(1-t)^2} + \frac{\Lambda_t}{1-t} + \frac{\mathrm{Sgn}(t)\Lambda_t}{\Lambda_t + |t|} \right. \\ &\left. - \frac{1+t^2}{1-t} \left[\mathrm{Sgn}(t) \ln \left(1 + \frac{\Lambda_t}{2|t|}\right) + \mathrm{Sgn}(1-t) \ln \left(1 + \frac{\Lambda_{1-t}}{2|1-t|}\right)\right]\right]_N \end{split}$$

where $\Lambda_t = \sqrt{\tilde{\mu}^2/P_z^2 + t^2} - |t|$, $\mathrm{Sgn}(t) = 1$ if $t \geq 0$, and -1 otherwise.

 $t = \tilde{x}/x$ ☐ Generalized "+" description:

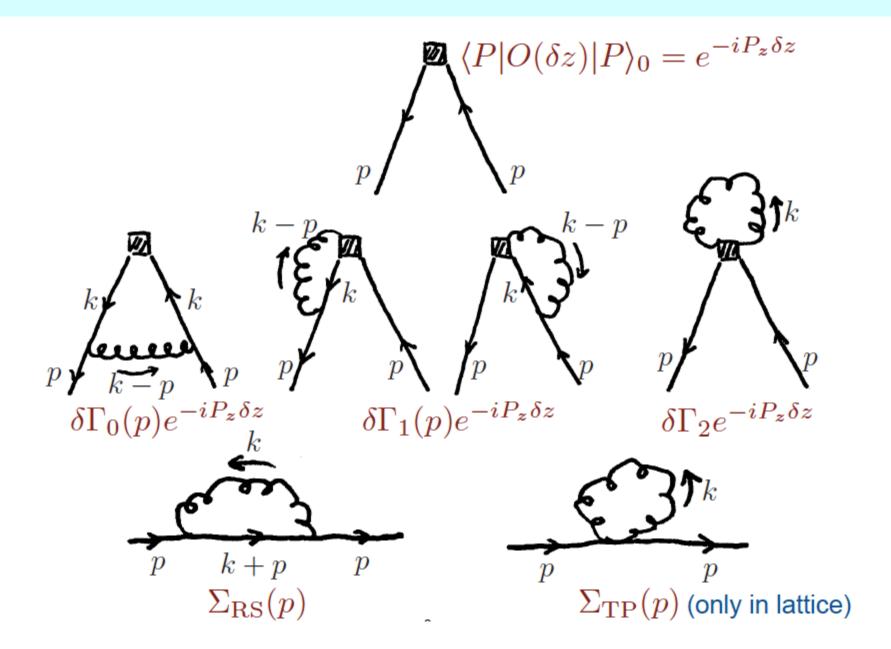
$$\int_{-\infty}^{+\infty} dt \Big[g(t)\Big]_N h(t) = \int_{-\infty}^{+\infty} dt \, g(t) \left[h(t) - h(1)\right] \qquad \begin{array}{c} \text{For a testing function} \\ h(t) \end{array}$$

Explicit verification of the factorization at one-loop:

Coefficient functions for all partonic channels are IR safe and finite!

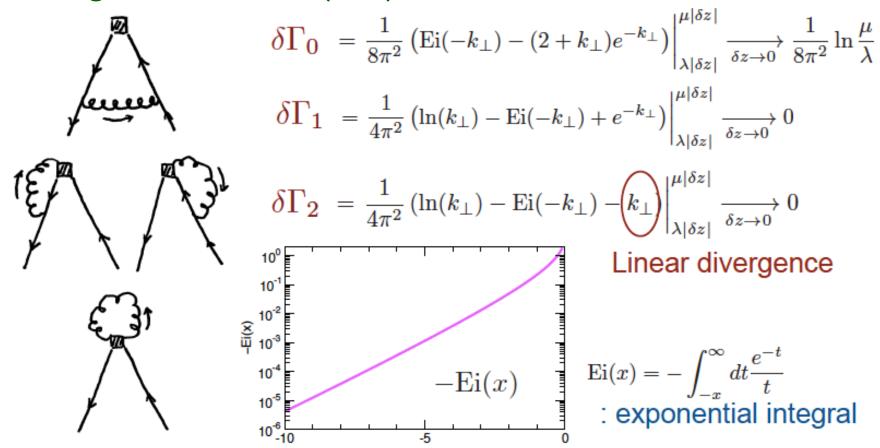
$$C_{i/j}^{(1)}(t, \tilde{\mu}^2, \mu, P_z)$$
 with $i, j = q, \bar{q}, g$

Feynman diagrams at one-loop



One-loop in Euclidean continuum

□ Divergence structure (P=0):



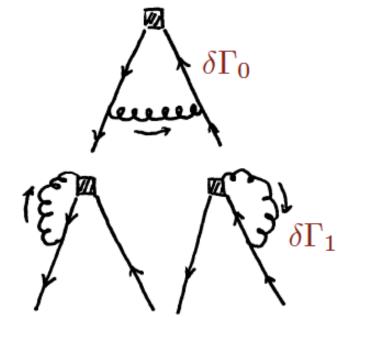
- \diamond Local case ($\delta_z
 ightarrow 0$) can be safely reproduced.
- ♦ Linear divergence from the tad-pole like diagram.
- \diamond UV(μ) and IR(λ) regulators are introduced in $\perp = (t,x,y)$ direction

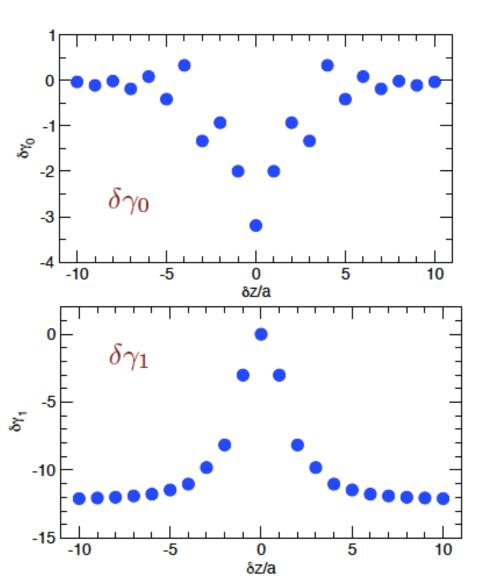
Matching lattice to continuum at one-loop

☐ One-loop matching coefficients:

- \diamond UV cut-off is set to be $\mu = a^{-1}$.
- Naive fermion is used.(not practical, but OK.)

$$\delta\Gamma_{\rm cont} - \delta\Gamma_{\rm latt} \equiv \frac{g^2}{16\pi^2} C_F \gamma_z \delta\gamma$$





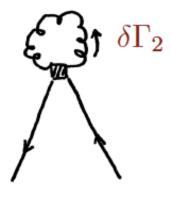
Matching lattice to continuum at one-loop

-0.3

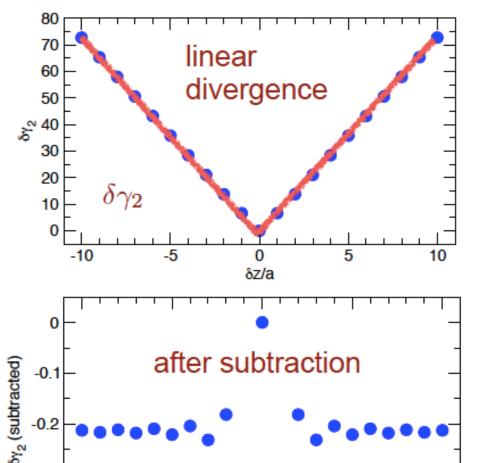
 $\delta \gamma_2 (\text{subt})$

☐ One-loop matching coefficients:

$$\delta\Gamma_{\rm cont} - \delta\Gamma_{\rm latt} \equiv \frac{g^2}{16\pi^2} C_F \gamma_z \delta\gamma$$



- There is a mismatch in linear divergence between continuum and lattice.
- The linear divergence should be subtracted, otherwise the continuum limit cannot be taken.



δz/a