Heavy Ion Physics with CMS at LHC (hard probes)

6th Workshop of the APS/GHP Baltimore, April 8, 2015 Bolek Wyslouch

Creating hot and dense matter in the laboratory

- High energy nucleus-nucleus collisions at highest energies RHIC@Brookhaven: $\sqrt{s_{NN}}$ = 200 GeV, LHC,@CERN $\sqrt{s_{NN}}$ = 2760 GeV
- Expanding plasma of quarks and gluons with volume of ~1000 fm³ temperature of few * 10¹² K (200-800 MeV) and energy density 10-20 GeV/ fm³
- Particle "probes" sensitive to the matter at different stages of the expansion

Focus on hard probes in nuclear collisions

Hot and dense medium

Jets, Quarkonia : originated from the hard scattered partons which carry color charges and interact with the medium. Probe the medium

Photons, W, Z : Colorless, provide initial state information. Nuclear parton distribution function (nPDF).

pA collisions: information about nPDF, helps disentangle different physics effects

PbPb collision at LHC

- Central collision (b≈0 fm) at $\sqrt{s_{NN}}$ = 2.76 TeV
- >10000 charged particles produced

CMS detector

HI-oriented runs: past and future

• Same N_{coll} scaled luminosities for pp, pPb, PbPb – (as many Z's and W's, modulo the \sqrt{s} dependence)

Probe plasma with energetic quarks and gluons

Quark-gluon plasma is incredibly strongly interacting – It can slow down and even stop very high energy quarks and gluons passing through it

Jet quenching in PbPb

Large jet quenching at the LHC gives rise to asymmetric dijets in central collisions

See the talk by Raghav Kunnawalkam Elayavalli on Friday

Dijet asymmetry in PbPb

 Compare two back-to-back jets: huge asymmetry for most central events

Tracing back the lost energy...

- Detailed ($\Delta R, p_T$) distributions
 - Summing charged particles for unbalanced (A_J>0.22) dijets in central (0–30%) collisions...
 - 35 GeV missing at ΔR <0.2, large p_T particles
 - Balanced by low p_T particle up to very large ΔR
 - Subtracting the same distribution from pp shows that there is different p_T mix between two systems

Jet quenching in pPb

Compare two jets in dijet events as a function transverse energy activity (pPb) <u>EPJC 74 (2014) 2951</u>

CMS pPb 35 nb⁻¹ 120, p_{T.2} > 30 GeV/c (a) 0.25 PYTHIA + HIJING All E^{4<|η|<5.} 20 GeV < $E_{T}^{4<|\eta|<5.2}$ < 25 GeV < 20 GeV ΥΤΗΙΑ Event fraction 0.2 0.15 0.1 0.05 (ď (e 0.25 $25 \text{ GeV} < E_{T}^{4 < |\eta| < 5.2}$ < 30 GeV $30 \text{ GeV} < \text{E}_{T}^{4 < |\eta| < 5.2}$ < 40 GeV 40 GeV Event fraction 0.2 0.15 0.1 0.05 0.2 0.2 0.8 0 0.2 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 p_{T_2}/p_{T_1}

 $p_{_{T1}} / p_{_{T2}}$

No quenching observed in pPb, but ...

- Quenching already modest in 50-100% PbPb
- It is difficult to pick out central pPb collisions

Detailed information about hadrons, jets & b-jets in pPb

Jets & b-jets in PbPb & pPb

- Little or no modification in pPb
- Strong suppression in PbPb
- No strong flavor dependence

lons

protons

R

Jets & hadrons in PbPb & pPb

Significant enhancement observed for hadrons at high p_T!

R_{pPb} for hadrons in pPb

$$R_{pPb} \left(50 < p_T < 100 \, GeV/c \right) \sim 1.38 \pm 0.22$$

- CMS generally agrees with ALICE and preliminary ATLAS data
- NLO with EPS09 for π⁰ is smaller than for charged hadrons
 [Helenius et al., JHEP 1207, 073 (2012)]

Too large to be due to antishadowing? Other nuclear effects?

nPDF & jets in pPb: Kinematics

Backward region (η_{CM} <0) for antishadowing (or EMC) Forward region (η_{CM} >0) more for shadowing (or antishadowing)

nPDF & jets in pPb: Data

EPJC 74, 2951 (2014)

B meson production in pPb

CMS PAS HIN-14-004

Three component fit for signal extraction:

- Signal
- Combinatorial background from J/ψ-track(s)
- Non-prompt component from other
 B-meson decays that form peaking structures
 (e.g. in B⁺ analysis, bkg from B⁰ → J/ψ K^{0*})

Fully reconstructed B meson signal in nuclear collisions!

R_{pA} & R_{AA} for B mesons: pA and AA

Fixed Order + Next-to-Leading Log, Cacciari et al

Electroweak bosons in PbPb & pPb

- Standard candles: Z⁰ and W[±] unmodified in PbPb
- pPb providing an opportunity to probe (valence) q and (sea) \bar{q} nPDF

Z⁰ in pPb

≈ 2200 Z → $\mu\mu$ showing little nuclear effect – maybe a hint of forward/backward asymmetry

 Z/γ^*

www.

W⁺ and W⁻ in pPb

$\thickapprox 21000 \text{ W} \rightarrow \mu$ & 16000 W $\rightarrow e$

Showing small deviations from unmodified PDFs

Quarkonia as a tool to probe the QGP

Different states have different binding energies Loosely bound states "melt" first!

Successive suppression of individual states provides a "thermometer" of the QGP

Quarkonia production: Dimuons

Prompt and non-prompt J/ ψ

$J/\psi R_{AA}$ vs. centrality in PbPb collisions

CMS PAS HIN-12-014

CMS: Prompt J/ψ

|y|<2.4 and p_T > 6.5 GeV/c

ALICE: inclusive J/ψ

- |y|<0.9 and p_T> 0
- 2.5<|y|<4.0 and p_T> 0
- Includes ~10% non-prompt
 J/ψ from b decays

Ψ(2S) / J/Ψ Double Ratio

in central PbPb collisions

PRL 113 (2014) 262301

Quarkonia production: Dimuons

Upsilons in PbPb collisions

PRL 109 (2012) 222301

Suppression of the five quarkonia in PbPb collisions

Upsilons in pp, pPb, and PbPb

Y(2S)/Y(1S) ratios as a function of event activity

Y(2S)/Y(1S) ratio decreases as a function of event activity! (1) More associated yield with Y(1S)?

(2) Large event size (multiplicity) affects Y states?

JHEP 04 (2014) 103

Summary

- CMS experiment has collected extensive data in nuclear collisions: PbPb, pPb
- There is more to come soon at double energy and much larger luminosity at LHC
- I have shown examples of measurements that help us understand the behavior of the hot nuclear matter: jet quenching, melting of quarkonia.
- We are also gaining understanding of the structure of the nuclei by exploiting asymmetric pPb collisions