Thermodynamic Signatures of Additional Strange and Charm Baryons

Swagato Mukherjee

April 2015, GHP, Baltimore, MD

Heavy-ion collisions: a sketch

Hadrons yields at the freeze-out

well described by: Hadron Resonance Gas (HRG) thermal gas of uncorrelated hadrons with vacuum masses

 $\hat{P}_{h} \sim f(\hat{m}_{h}) \cosh[B_{h}\hat{\mu}_{B} + Q_{h}\hat{\mu}_{Q} + S_{h}\hat{\mu}_{S} + C_{h}\hat{\mu}_{C}]$

LQCD: validity of hadronic description

baryon – charge/strangeness/charm correlations:

$$\mathsf{HRG:} \quad \hat{\mathsf{P}}_{\mathsf{h}} \sim \mathsf{f}(\hat{\mathsf{m}}_{\mathsf{h}}) \, \mathsf{cosh}[\mathsf{B}_{\mathsf{h}}\hat{\mu}_{\mathsf{B}} + \mathsf{Q}_{\mathsf{h}}\hat{\mu}_{\mathsf{Q}} + \mathsf{S}_{\mathsf{h}}\hat{\mu}_{\mathsf{S}} + \mathsf{C}_{\mathsf{h}}\hat{\mu}_{\mathsf{C}}]$$

 $\chi_{BX}^{nm}/\chi_{BX}^{km} = B^{n-k}$ = 1, when dof are hadronic with B=1 < 1, when dof are quarks with B=1/3

independent of hadron mass spectrum, relies only on changing quantum number

 $\chi_{BX}^{nm} = \left. \frac{\partial^{n+m} \hat{P}}{\partial^n \hat{\mu}_B \partial^m \hat{\mu}_X} \right|_{\vec{\mu} = 0}$

 $\chi_{BX}^{nm} = B^n \times F(\hat{m})$

LQCD: validity of hadronic description

Ebert et. al.: Eur. Phys. J. C66, 197 (2010); Phys. Rev. D84, 014025 (2011)

hadronic pressure: $P^{C} = \sum_{h=1}^{C}$

Quark Model

charm baryons

expt. observed hadrons + unobserved ones

LQCD

Padmanath et.al.: arXiv:1311.4806 [hep-lat]

Ebert et. al.: Eur. Phys. J. C66, 197 (2010); Phys. Rev. D84, 014025 (2011)

Capstick-Isgur: Phys. Rev. D34, 2809 (1986)

hadronic pressure: $P^{s} = \sum$

expt. observed hadrons + unobserved ones

LQCD

JLab: Phys. Rev. D87, 054506 (2013)

Capstick-Isgur: Phys. Rev. D34, 2809 (1986)

significant contributions of these unseen states to the ratios of partial pressures of baryon to meson near the QCD crossover

partial pressure of baryon \rightarrow B; meson \rightarrow M

similar results with LQCD spectra

LQCD: operators to identify separate thermodynamic contributions of strange/charm baryons/mesons 10 Operators for partial pressures of baryons & mesons

suitable combinations of up to 4th order baryon – charm/strangeness correlations

$$\chi_{\mathsf{BX}}^{\mathsf{nm}} = \left. \frac{\partial^{\mathsf{n+m}} \hat{\mathsf{P}}}{\partial^{\mathsf{n}} \hat{\mu}_{\mathsf{B}} \partial^{\mathsf{m}} \hat{\mu}_{\mathsf{X}}} \right|_{\vec{\mu}=0}$$

BNL-Bi: Phys. Lett. B737 (2014) 210; Phys. Rev. Lett. 111, 082301 (2013)

a simplified example:

hadron gas
$$\rightarrow \hat{P}^{c} \sim P^{c}_{M} \cosh[\hat{\mu}_{c}] + P^{c}_{B} \cosh[\hat{\mu}_{B} + \hat{\mu}_{c}]$$

partial pressure
of |C|=1 mesons partial pressure
of |C|=1 baryons neglect contributions of
heavier |C|=2,3 baryons,
x1000 suppressed

$$\chi_k^C \simeq P_M^C + P_B^C \qquad \qquad \chi_{mn}^{BC} \simeq P_B^C$$

Signatures of additional charm baryons

BNL-Bi: Phys. Lett. B737 (2014) 210

relative contributions:

charm baryons to charmed mesons

$$\chi_{13}^{BC}/(\chi_{4}^{C}-\chi_{13}^{BC})=P_{B}^{C}/P_{M}^{C}$$

strange charm baryons to strange charmed mesons

signatures of additional, yet unobserved charm baryons from QCD thermodynamics

Thermodynamic contributions of additional strange baryons

relative contributions of strange baryons to strange mesons

BNL-Bi: Phys. Rev. Lett. 113 (2014) 072001

partial pressure of strange mesons:

$$\begin{split} M_1^S &= \chi_2^S \!-\! \chi_{22}^{BS} \\ M_2^S &= \frac{1}{12} \big(\chi_4^S \!+\! 11 \, \chi_2^S \big) \!+\! \frac{1}{2} \big(\chi_{22}^{BS} \!+\! \chi_{13}^{BS} \big) \end{split}$$

partial pressure of strange baryons:

$$B_{1}^{S} = -\frac{1}{6} \left(11 \chi_{11}^{BS} + 6 \chi_{22}^{BS} + \chi_{13}^{BS} \right)$$
$$B_{2}^{S} = \frac{1}{12} \left(\chi_{4}^{S} - \chi_{2}^{S} \right) + \frac{1}{3} \left(4 \chi_{11}^{BS} - \chi_{13}^{BS} \right)$$

+ undiscovered strange baryons

contributions of all expt.
 observed strange hadrons

Thermodynamic contributions of additional strange baryons

Hierarchical freeze-out of light & strange hadrons?

Andornic et.al.: Nucl. Phys. A904, 535c (2013)

~10-5 MeV systematic difference in freeze-out T from separate fits to light and strange hadrons

two separate freeze-out stages for light and strange hadrons ?

Phys. Rev. Lett. 111, 202302 (2013); Phys. Lett. B727, 554 (2013); Europhys. Lett. 104, 22002 (2013) ...

Strange baryon yields in heavy-ion collisions

does not assume spectrum of hadron gas, only assumes hadron yields are thermal

Strangeness neutrality & strangeness chemical potential

a given value of μ_S/μ_B is realized at a lower temperature

BNL-Bi: Phys. Rev. Lett. 113 (2014) 072001

Strangeness, LQCD and freeze-out in HIC

BNL-Bi: Phys. Rev. Lett. 113 (2014) 072001

Additional strange hadrons & freeze-out in HIC

inclusion of additional strange hadrons reduces freeze-out T & agrees with LQCD+expt. determination

indirect evidence for so-far undiscovered strange baryons at RHIC ?

BNL-Bi: Phys. Rev. Lett. 113 (2014) 072001

Additional strange hadrons & RHIC BES

from expt. measured

$$\frac{\ln[N_{\kappa^{-}}/N_{\kappa^{+}}]}{\ln[N_{\bar{p}}/N_{p}]} = \frac{\mu_{S}^{f}}{\mu_{B}^{f}}$$

need accurate expt. measurements & feed-down corrections²⁰ Summary

hot-dense LQCD:

additional, yet unobserved strange & charm baryons become thermodynamically relevant near the QCD crossover

these additional strange baryons are important for determining the `observed' freeze-out temperatures of heavy-ion collision experiments

freeze-out temperatures for strange hadrons obtained comparing LQCD and HIC expt. favors presence of these additional hadrons