TMD Evolution and the Higgs transverse momentum distribution

Daniël Boer GHP workshop, Baltimore, April 8, 2015

university of groningen

- Higgs transverse momentum distribution
- Linear gluon polarization in unpolarized hadrons
- Electron-ion collisions
- Small x aspects

Higgs transverse momentum distribution

Higgs production in gluon fusion

Higgs production happens predominantly via gg \rightarrow H

The inclusive Higgs production cross section at LHC can be described well because the collinear gluon distribution inside protons is known well

It becomes a different matter for the transverse momentum distribution At large Q_T one can again use collinear factorization, but at smaller Q_T there are large logs of Q_T/m_H (resummation) & nonperturbative contributions

It is natural to describe process in terms of transverse momentum dependent gluon distribution functions (TMDs) and TMD factorization & evolution

Perturbative state-of-the-art

Neill, Rothstein, Vaidya, arXiv:1503.00005

TMD factorization

Schematic form of TMD factorization [Collins 2011; Echevarria, Idilbi, Scimemi, 2012]:

 $d\sigma = H \times \text{convolution of } AB + \text{high-}q_T \text{ correction } (Y) + \text{power-suppressed}$

 $> |P_{h\perp}|$

A & B are TMD pdfs or FFs (a soft factor has been absorbed in them) $d\sigma$ ("TMD region", $Q_T \ll Q$ "Y region", $Q_T \sim Q$

 $\Lambda_{\rm TMD}$

Details in book by J.C. Collins Summarized in arXiv:1107.4123

Convolution in terms of A and B best deconvoluted by Fourier transform

 $|P_{h\perp}|_{
m res}$

TMD factorization expressions $\frac{d\sigma}{d\Omega d^4 q} = \int d^2 b \, e^{-i\boldsymbol{b}\cdot\boldsymbol{q}_T} \tilde{W}(\boldsymbol{b}, Q; x, y, z) + \underbrace{\mathcal{O}\left(Q_T^2/Q^2\right)}_{\tilde{U}(Q_T^2/Q^2)}$

 $\tilde{W}(\boldsymbol{b}, Q; x_A, x_B) = \tilde{f}_1^g(x_A, \boldsymbol{b}^2; \zeta_A, \mu) \,\tilde{f}_1^g(x_B, \boldsymbol{b}^2; \zeta_B, \mu) H(Q; \mu)$

Fourier transforms of the TMDs are functions of the momentum fraction x, the transverse coordinate b, a rapidity variable ζ , and the renormalization scale μ

$$\zeta_A = M_A^2 x_A^2 e^{2(y_A - y_s)} \quad \zeta_B = M_B^2 x_B^2 e^{2(y_s - y_B)}$$

 y_s is an arbitrary rapidity that drops out of the final answer

$$\zeta_A \zeta_B \approx Q^4 \qquad \qquad \zeta_A \approx \zeta_B \approx Q^2$$

The TMDs in principle also depend on a process dependent Wilson line U

 $\tilde{f}^{[\mathcal{U}]}(x, b_T^2; \zeta, \mu)$

TMD factorization expressions

$$\begin{split} \frac{d\sigma}{d\Omega d^4q} &= \int d^2 b \, e^{-i\boldsymbol{b}\cdot\boldsymbol{q}_T} \tilde{W}(\boldsymbol{b}, Q; \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) + \mathcal{O}\left(Q_T^2/Q^2\right) \\ \tilde{W}(\boldsymbol{b}, Q; \boldsymbol{x}_A, \boldsymbol{x}_B) &= \tilde{f}_1^g(\boldsymbol{x}_A, \boldsymbol{b}^2; \zeta_A, \mu) \, \tilde{f}_1^g(\boldsymbol{x}_B, \boldsymbol{b}^2; \zeta_B, \mu) H\left(Q; \mu\right) \\ \text{Take } \mu &= Q \\ H\left(Q; \alpha_s(Q)\right) \propto e_a^2 \left(1 + \alpha_s(Q^2)F_1 + \mathcal{O}(\alpha_s^2)\right) \end{split}$$

This choice avoids large logarithms in H, but now they will appear in the TMDs

Use renormalization group equations to evolve the TMDs to the scale:

$$\mu_b = C_1/b = 2e^{-\gamma_E}/b \quad (C_1 \approx 1.123)$$

This resums large logs in bQ

So even at one value of Q one probes TMDs at a whole range of scales

Resummation of large logs

$$\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right] = \int \frac{d^{2} \boldsymbol{b}}{(2\pi)^{2}} e^{i\boldsymbol{b}\cdot\boldsymbol{q}_{T}} \tilde{f}_{1}^{g}(x_{A}, b^{2}; \zeta_{A}, Q) \tilde{f}_{1}^{g}(x_{B}, b^{2}; \zeta_{B}, Q)$$

$$= \int \frac{d^{2} \boldsymbol{b}}{(2\pi)^{2}} e^{i\boldsymbol{b}\cdot\boldsymbol{q}_{T}} e^{-S_{A}(b,Q)} \tilde{f}_{1}^{g}(x_{A}, b^{2}; \mu_{b}^{2}, \mu_{b}) \tilde{f}_{1}^{g}(x_{B}, b^{2}; \mu_{b}^{2}, \mu_{b})$$

Perturbative Sudakov factor:

$$S_{A}(b,Q) = \frac{C_{A}}{\pi} \int_{\mu_{b}^{2}}^{Q^{2}} \frac{d\mu^{2}}{\mu^{2}} \alpha_{s}(\mu) \left[\ln\left(\frac{Q^{2}}{\mu^{2}}\right) - \frac{11 - 2n_{f}/C_{A}}{6} \right] + \mathcal{O}(\alpha_{s}^{2}) \\ = -\frac{36}{33 - 2n_{f}} \left[\ln\left(\frac{Q^{2}}{\mu_{b}^{2}}\right) + \ln\left(\frac{Q^{2}}{\Lambda^{2}}\right) \ln\left(1 - \frac{\ln\left(Q^{2}/\mu_{b}^{2}\right)}{\ln\left(Q^{2}/\Lambda^{2}\right)}\right) \\ + \frac{11 - 2n_{f}/C_{A}}{6} \ln\left(\frac{\ln\left(Q^{2}/\Lambda^{2}\right)}{\ln\left(\mu_{b}^{2}/\Lambda^{2}\right)}\right) \right]$$

Nonperturbative Sudakov factor

$$\frac{d\sigma}{dx_A dx_B d\Omega d^2 \boldsymbol{q}_T} = \int d^2 b \, e^{-i\boldsymbol{b}\cdot\boldsymbol{q}_T} \tilde{W}(\boldsymbol{b}, Q; x_A, x_B) + \mathcal{O}\left(\frac{Q_T^2}{Q^2}\right)$$

The integral is over all b, including large (=nonperturbative) b values

 $\tilde{W}(b) \equiv \tilde{W}(b_*) e^{-S_{NP}(b)}$ $b_* = b/\sqrt{1 + b^2/b_{\max}^2} \le b_{\max}$ $b_{\max} = 1.5 \text{ GeV}^{-1} \Rightarrow \alpha_s(b_0/b_{\max}) = 0.62$

W(b*) can be calculated within perturbation theory

In general the nonperturbative Sudakov factor is Q dependent

No extraction of S_{NP} exists; use a modified quark one (Drell-Yan), e.g.

$$S_{NP}(b,Q,Q_0) \neq \underbrace{\frac{C_A}{C_F}}_{O_F} \left[0.184 \ln \frac{Q}{2Q_0} + 0.332 \right] b^2$$

Aybat & Rogers, PRD 83 (2011) 114042

Effect of gluon polarization on Higgs Q_T distribution

Gluon polarization inside unpolarized protons

Linearly polarized gluons exist in unpolarized hadrons Mulders, Rodrigues, 2001

It requires nonzero transverse momentum: TMD

For $h_1^{\perp g} > 0$ gluons prefer to be polarized along $k_{T,}$ with a $\cos 2\phi$ distribution of linear polarization around it, where $\phi = \angle (k_{T}, \varepsilon_T)$

an interference between ±1 helicity gluon states

It affects the transverse momentum distribution in $pp \rightarrow HX$ (Higgs production) Catani & Grazzini, 2010; Sun, Xiao, Yuan, 2011; D.B., Den Dunnen, Pisano, Schlegel, Vogelsang, 2012

Higgs transverse momentum

Linearly polarized gluons are generated perturbatively [Nadolsky, Balazs, Berger, Yuan, 2007]

Linearly polarized gluons enter Higgs production ($\sigma(Q_T)$) at NNLO pQCD [Catani & Grazzini, 2010]

The nonperturbative distribution can be present at tree level and would affect Higgs production at low Q_T

[Sun, Xiao, Yuan, 2011; DB, Den Dunnen, Pisano, Schlegel, Vogelsang, 2012]

$$h_1^{\perp g} \text{ in } p \ p \to H \ X$$

$$\frac{d\sigma}{dx_A dx_B d\Omega d^2 \boldsymbol{q}_T} = \int d^2 b \, e^{-i\boldsymbol{b}\cdot\boldsymbol{q}_T} \tilde{W}(\boldsymbol{b}, Q; x_A, x_B) + \mathcal{O}\left(\frac{Q_T^2}{Q^2}\right)$$

$$\tilde{W}(\boldsymbol{b}, Q; x_A, x_B) = \tilde{f}_1^g(x_A, \boldsymbol{b}^2; \zeta_A, \mu) \,\tilde{f}_1^g(x_B, \boldsymbol{b}^2; \zeta_B, \mu) H\left(Q; \mu\right)$$

Linearly polarized gluons inside unpolarized protons adds a term to W(b)

$$\tilde{\Phi}_{g}^{ij}(x, \boldsymbol{b}) = \frac{1}{2x} \left\{ \delta^{ij} \, \tilde{f}_{1}^{g}(x, b^{2}) - \left(\frac{2b^{i}b^{j}}{b^{2}} - \delta^{ij}\right) \, \tilde{h}_{1}^{\perp \, g}(x, b^{2}) \right\}$$

$$\begin{split} \Phi_{g}^{\mu\nu}(x,\boldsymbol{p}_{T}) &= \frac{n_{\rho} n_{\sigma}}{(p \cdot n)^{2}} \int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2\pi)^{3}} e^{i p \cdot \xi} \left\langle P | \operatorname{Tr} \left[F^{\mu\rho}(0) F^{\nu\sigma}(\xi) \right] | P \right\rangle \right]_{\mathrm{LF}} \\ &= -\frac{1}{2x} \left\{ g_{T}^{\mu\nu} f_{1}^{g} - \left(\frac{p_{T}^{\mu} p_{T}^{\nu}}{M^{2}} + g_{T}^{\mu\nu} \frac{\boldsymbol{p}_{T}^{2}}{2M^{2}} \right) h_{1}^{\perp g} \right\} \end{split}$$

This term requires nonzero k_T , but is k_T even, chiral even and T even

Large k_T tail

Aybat & Rogers, PRD 83 (2011) 114042

The large k_T tail can be calculated perturbatively: ~ $\alpha s/k_T^2$

Moving to b space

Ratio of large k_T tails of h_1^{\perp} and f_1 is large, does not mean large effects at large Q_T (which involves ratios of *integrals* over all k_T)

What matters is the small b behavior of the Fourier transformed TMD:

$$\tilde{f}_1^g(x,b^2;\mu_b^2,\mu_b) = f_{g/P}(x;\mu_b) + \mathcal{O}(\alpha_s)$$

$$\tilde{h}_{1}^{\perp g}(x,b^{2};\mu_{b}^{2},\mu_{b}) = \frac{\alpha_{s}(\mu_{b})C_{A}}{2\pi} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \left(\frac{\hat{x}}{x}-1\right) f_{g/P}(\hat{x};\mu_{b}) + \mathcal{O}(\alpha_{s}^{2})$$

[Nadolsky, Balazs, Berger, C.-P.Yuan, 2007; Catani, Grazzini, 2010; P. Sun, B.-W. Xiao, F.Yuan, 2011]

The linear polarization starts at order α s, which gives it a suppression w.r.t. f_1

Full cross section

$$\frac{E \, d\sigma^{pp \to HX}}{d^3 \vec{q}} \Big|_{q_T \ll m_H} = \frac{\pi \sqrt{2} G_F}{128 m_H^2 s} \left(\frac{\alpha_s}{4\pi}\right)^2 \left|\mathcal{A}_H(\tau)\right|^2 \\ \times \left(\mathcal{C}\left[f_1^g \, f_1^g\right] + \mathcal{C}\left[w_H \, h_1^{\perp g} \, h_1^{\perp g}\right]\right) + \mathcal{O}\left(\frac{q_T}{m_H}\right) \\ w_H = \frac{(\boldsymbol{p}_T \cdot \boldsymbol{k}_T)^2 - \frac{1}{2} \boldsymbol{p}_T^2 \boldsymbol{k}_T^2}{2M^4} \qquad \tau = m_H^2 / (4m_t^2)$$

The angular independent relative effect of linearly polarized gluons:

$$\mathcal{R}(Q_T) \equiv \frac{\mathcal{C}[w_H h_1^{\perp g} h_1^{\perp g}]}{\mathcal{C}[f_1^g f_1^g]}$$

$$\mathcal{R}(Q_T) = \frac{\int d^2 \boldsymbol{b} \, e^{i\boldsymbol{b}\cdot\boldsymbol{q}_T} e^{-S_A(b_*,Q) - S_{NP}(b,Q)} \, \tilde{h}_1^{\perp g}(x_A, b_*^2; \mu_{b_*}^2, \mu_{b_*}) \, \tilde{h}_1^{\perp g}(x_B, b_*^2; \mu_{b_*}^2, \mu_{b_*})}{\int d^2 \boldsymbol{b} \, e^{i\boldsymbol{b}\cdot\boldsymbol{q}_T} \, e^{-S_A(b_*,Q) - S_{NP}(b,Q)} \tilde{f}_1^g(x_A, b_*^2; \mu_{b_*}^2, \mu_{b_*}) \, \tilde{f}_1^g(x_B, b_*^2; \mu_{b_*}^2, \mu_{b_*})}$$

Tail-only result

$$\mathcal{R}(Q_T) = \frac{\int d^2 \boldsymbol{b} \, e^{i\boldsymbol{b}\cdot\boldsymbol{q}_T} e^{-S_A(b_*,Q) - S_{NP}(b,Q)} \, \tilde{h}_1^{\perp g}(x_A, b_*^2; \mu_{b_*}^2, \mu_{b_*}) \, \tilde{h}_1^{\perp g}(x_B, b_*^2; \mu_{b_*}^2, \mu_{b_*})}{\int d^2 \boldsymbol{b} \, e^{i\boldsymbol{b}\cdot\boldsymbol{q}_T} \, e^{-S_A(b_*,Q) - S_{NP}(b,Q)} \tilde{f}_1^g(x_A, b_*^2; \mu_{b_*}^2, \mu_{b_*}) \, \tilde{f}_1^g(x_B, b_*^2; \mu_{b_*}^2, \mu_{b_*})}$$

$$\begin{split} \tilde{h}_{1}^{\perp g}(x, b^{2}) &= \int d^{2} \boldsymbol{p}_{T} \; \frac{(\boldsymbol{b} \cdot \boldsymbol{p}_{T})^{2} - \frac{1}{2} \boldsymbol{b}^{2} \boldsymbol{p}_{T}^{2}}{b^{2} M^{2}} \; e^{-i\boldsymbol{b} \cdot \boldsymbol{p}_{T}} \; h_{1}^{\perp g}(x, p_{T}^{2}) \\ &= -\pi \int dp_{T}^{2} \frac{p_{T}^{2}}{2M^{2}} J_{2}(bp_{T}) h_{1}^{\perp g}(x, p_{T}^{2}) \end{split}$$

Consider now only the perturbative tails:

$$\tilde{f}_{1}^{g}(x,b^{2};\mu_{b}^{2},\mu_{b}) = f_{g/P}(x;\mu_{b}) + \mathcal{O}(\alpha_{s})$$
$$\tilde{h}_{1}^{\perp g}(x,b^{2};\mu_{b}^{2},\mu_{b}) = \frac{\alpha_{s}(\mu_{b})C_{A}}{2\pi} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \left(\frac{\hat{x}}{x} - 1\right) f_{g/P}(\hat{x};\mu_{b}) + \mathcal{O}(\alpha_{s}^{2})$$

This coincides with the CSS approach

[Nadolsky, Balazs, Berger, C.-P.Yuan, '07; Catani, Grazzini, '10; P. Sun, B.-W. Xiao, F.Yuan, '11]

TMD evolution

Conclusion: in Higgs production linear gluon polarization contributes at few % level

Comparison to other results

PHYSICAL REVIEW D 86, 094026 (2012)

Improved resummation prediction on Higgs boson production at hadron colliders

Jian Wang,¹ Chong Sheng Li,^{1,2,*} Hai Tao Li,¹ Zhao Li,^{3,†} and C.-P. Yuan^{2,3,‡}

They find permille level effects at the Higgs scale, but using the TMD approach at the LL level yields percent level effects

Wang et al. include α_s^2 terms, but in denominator only, and also use a different pdf set and S_{NP}

$$\begin{split} \tilde{f}_{g/P}(x,b^2;\mu,\zeta) &= \sum_{i=g,q} \int_x^1 \frac{d\hat{x}}{\hat{x}} C_{i/g}(x/\hat{x},b^2;g(\mu),\mu,\zeta) f_{i/P}(\hat{x};\mu) + \mathcal{O}((\Lambda_{\rm QCD}b)^a) \\ & \frac{G^{(1)}G^{(1)}\alpha_s^2 + 2G^{(1)}G^{(2)}\alpha_s^3}{C^{(0)}C^{(0)} + 2C^{(0)}C^{(1)}\alpha_s + (C^{(1)}C^{(1)} + 2C^{(0)}C^{(2)})\alpha_s^2} \approx \\ & \frac{G^{(1)}G^{(1)}\alpha_s^2}{C^{(0)}C^{(0)}} \left(1 + \frac{2G^{(1)}G^{(2)}}{G^{(1)}G^{(1)}}\alpha_s + \mathcal{O}(\alpha_s^2)\right) \left(1 - \frac{2C^{(0)}C^{(1)}}{C^{(0)}C^{(0)}}\alpha_s + \mathcal{O}(\alpha_s^2)\right) \end{split}$$

They include third factor, but not second May explain additional suppression partly

Further resummations

For the TMD at small b one often considers the perturbative tail, which is calculable

$$\tilde{f}_{g/P}(x,b^2;\mu,\zeta) = \sum_{i=g,q} \int_x^1 \frac{d\hat{x}}{\hat{x}} C_{i/g}(x/\hat{x},b^2;g(\mu),\mu,\zeta) f_{i/P}(\hat{x};\mu) + \mathcal{O}((\Lambda_{\rm QCD}b)^a)$$

To extend it to be valid at larger b values one can perform further resummation:

$$\tilde{F}_{q/N}^{\text{pert}}(x,b_T;\zeta,\mu) = \left(\frac{\zeta b_T^2}{4e^{-2\gamma_E}}\right)^{-D^R(b_T;\mu)} e^{h_{\Gamma}^R(b_T;\mu) - h_{\gamma}^R(b_T;\mu)} \sum_j \int_x^1 \frac{dz}{z} \hat{C}_{q\leftarrow j}(x/z,b_T;\mu) f_{j/N}(z;\mu)$$

$$\tilde{F}_{q/N}(x, b_T; Q_i^2, \mu_i) = \tilde{F}_{q/N}^{\text{pert}}(x, b_T; Q_i^2, \mu_i) \,\tilde{F}_{q/N}^{\text{NP}}(x, b_T; Q_i)$$

$$\tilde{F}_{q/N}^{\rm NP}(x, b_T; Q_i) \equiv \tilde{F}_{q/N}^{\rm NP}(x, b_T) \left(\frac{Q_i^2}{Q_0^2}\right)^{-D^{\rm NP}(b_T)}$$

Echevarria, Idilbi, Schäfer, Scimemi, EPJC 73 (2013) 2636 D'Alesio, Echevarria, Melis, Scimemi, JHEP 1411 (2014) 098

$$\tilde{F}_{j/A}^{f,NP}(x_A, b_T; Q) = \exp\left[-b_T^2(\lambda_f + \lambda_Q \ln(Q^2/Q_0^2))\right], \qquad Q_0 = 1 \text{ GeV}$$
$$\tilde{F}_{j/A}^{h,NP}(x_A, b_T; Q) = \exp\left[-b_T^2(\lambda_h + \lambda_Q \ln(Q^2/Q_0^2))\right], \qquad Q_0 = 1 \text{ GeV}$$

 $n_1^{\perp g} \text{ in } p \ p \to H \ X$

Echevarria, Kasemets, Mulders, Pisano, arXiv:1502.05354

Range of predictions

[1] Echevarria, Kasemets, Mulders, Pisano, arXiv:1502.05354

[2] D.B. & den Dunnen, NPB 886 (2014) 421

Uncertainties

Intermediate b values

In the TMD factorized expression there may be nonperturbative contributions from small p_T which mainly affect large b

The perturbative tail holds for small b which is dominated by large p_T , but there is an intermediate region

To study the significance of this region, we consider a model which is approximately Gaussian at low p_T and has the correct tail at high p_T or small b:

$$f_1^g(x, p_T^2) = f_1^g(x) \frac{R^2}{2\pi} \frac{1}{1 + p_T^2 R^2} \qquad \qquad R = 2 \,\text{GeV}^{-1}$$

$$h_1^{\perp g}(x, p_T^2) = cf_1^g(x)\frac{M^2R_h^4}{2\pi}\frac{1}{(1+p_T^2R_h^2)^2}$$

To satisfy Soffer-like bound:

 $R_h^2 = 3R^2/2$ c = 2

Gaussian+tail model

Gaussian+tail yields much smaller contributions at small Q

Comparison

Very small b region

For very small b region (b << I/Q) the perturbative expressions for S_A flip sign

$$S_A(b,Q) = \frac{C_A}{\pi} \int_{\mu_b^2}^{Q^2} \frac{d\mu^2}{\mu^2} \alpha_s(\mu) \left[\dots\right] \stackrel{b \ll 1/Q}{\to} -\frac{C_A}{\pi} \int_{Q^2}^{\mu_b^2} \frac{d\mu^2}{\mu^2} \alpha_s(\mu) \left[\dots\right]$$

As a consequence $\sigma \sim F.T. [W(b)] < 0$ at larger q_T

See e.g. Boglione, Gonzalez Hernandez, Melis, Prokudin, 1412.1383

Well-known problem. Use standard regularization:

$$Q^2/\mu_b^2 = b^2 Q^2/b_0^2 \to Q^2/\mu_b'^2 \equiv (bQ/b_0 + 1)^2$$

Parisi, Petronzio, 1985

Precise form of Parisi-Petronzio regularization usually irrelevant since matching to Y-term is needed anyway, but not so in the Higgs case where the problem already arises at $q_T=0$!

Very small b region

At low Q there is quite some uncertainty from the very small b region (b << I/Q)

reg=standard regularization:

$$Q^2/\mu_b^2 = b^2 Q^2/b_0^2 \to Q^2/\mu_b'^2 \equiv (bQ/b_0 + 1)^2$$

Parisi, Petronzio, 1985

prime=evolve everything to scale μ_b '

Feasibility

Neill, Rothstein, Vaidya, arXiv:1503.00005

NNLL+NNLO has 10-20% uncertainty, plus an unknown nonperturbative contribution

p_T resolution

A.V. Lipatov, M.A. Malysnev, N.P. Zotov, PLB 735, 79 (2014)

Data from ATLAS-CONF-2013-072

Current pT resolution of Higgs too low at low pT, will eventually be around 5 GeV Study of the heavy quarkonia is probably more promising, perhaps less challenging, but theoretical uncertainties are significantly larger

Higgs decay channels

In reality the Higgs boson decays

Energy resolution becomes important $\Delta Q=0.5$ GeV in $\gamma\gamma$ channel

There will be background processes to deal with

Linearly polarized gluons also enter in the process $gg \rightarrow \gamma\gamma$ without Higgs [Nadolsky, Balazs, Berger, Yuan, '07; ,Qiu, Schlegel, Vogelsang '11]

Percent level $R(Q_T)$ from gg $\rightarrow \gamma\gamma$ at RHIC energy Qiu, Schlegel, Vogelsang, PRL '11

At small p_T gg → γγg dominates Szczurek, Luszczak, Maciula, PRD 90, 094023 (2014)

FIG. 26 (color online). Transverse momentum distribution of the Higgs boson in the $\gamma\gamma$ channels for different mechanisms: $gg \rightarrow H$ (solid line), $gg \rightarrow Hg$ (dashed line) and $WW \rightarrow H$ (dash-dotted line).

Higgs+jet production

[D.B., Pisano, arXiv:1412.5556]

Electron-ion collisions

Heavy quark production

 $h_1^{\perp g}$ can be probed in charm and bottom quark production Here it appears only once, so less suppressed

It leads to a cos 2(ϕ_T - ϕ_{\perp}) asymmetry in heavy quark pair production in DIS $\phi_{T/\perp}$: angles of $K_{\perp}^Q \pm K_{\perp}^{\bar{Q}}$

[D.B., Brodsky, Mulders & Pisano, '10]

Best measured at an Electron-Ion Collider (USA) or LHeC (CERN)

EIC is best for this, because of problems with factorization in pp (RHIC, LHC) Rogers, Mulders '10

Maximum asymmetries in heavy quark production

 $ep \to e'Q\bar{Q}X$ $R = bound on |\langle \cos 2(\phi_T - \phi_\perp) \rangle|$

Pisano, D.B., Brodsky, Buffing & Mulders, JHEP 10 (2013) 024

Maximum asymmetries in heavy quark production

 $ep \to e'Q\bar{Q}X$ $R' = bound on |\langle \cos 2(\phi_{\ell} - \phi_T) \rangle|$

Pisano, D.B., Brodsky, Buffing & Mulders, JHEP 10 (2013) 024

Gluon polarization at small x

Does the linear gluon polarization matter at small-x? Circular polarization $\Delta g(x)$ is suppressed w.r.t. g(x) at small x

Its evolution kernel does not have I/x behavior:

$$\Delta P_{gg}(z) = \frac{2C_A(2-z)}{1-z}$$

Linearly polarized gluon distribution inside unpolarized protons does grow with 1/x:

$$\tilde{h}_{1}^{\perp g}(x, b^{2}; \mu_{b}^{2}, \mu_{b}) = \frac{\alpha_{s}(\mu_{b})C_{A}}{2\pi} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \left(\frac{\hat{x}}{x} - 1\right) f_{g/P}(\hat{x}; \mu_{b}) + \mathcal{O}(\alpha_{s}^{2})$$

It turns out the linear polarization can even become maximal!

Linear gluon polarization at small x

At small x the WW (or CGC) gluon field and the dipole distribution have been studied:

 $\begin{aligned} h_{1,WW}^{\perp g} \ll f_{1,WW}^{\perp g} & \text{for } k_{\perp} \ll Q_s, \qquad h_{1,WW}^{\perp g} = 2f_{1,WW}^{\perp g} & \text{for } k_{\perp} \gg Q_s \\ \\ xh_{1,DP}^{\perp g}(x,k_{\perp}) = 2xf_{1,DP}^g(x,k_{\perp}) \end{aligned}$

Metz, Zhou '11

At small x the "k_T-factorization" approach (CCFM) yields maximum polarization too:

$$\Phi_g^{\mu
u}(x, oldsymbol{p}_T)_{ ext{max pol}} = rac{2}{x} \, rac{p_T^\mu p_T^
u}{oldsymbol{p}_T^2} f_1^g$$
 Catani, Ciafaloni, Hautmann, 1991

Applied to Higgs production by Lipatov, Malyshev, Zotov, PLB 735 (2014) 79

There is no theoretical reason why it should be small, especially at small x But note that what matters is the b space expression, i.o.w. the full k_T range

Small x

At small-x there are two unpolarized "universal" gluon distributions Dominguez, Marquet, Xiao, Yuan, 2011

$$xG^{(1)}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \langle P|\mathrm{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle$$

$$xG^{(2)}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \langle P|\operatorname{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle$$

Recall "A tale of two gluon distributions", Kharzeev, Kovchegov, Tuchin, PRD 68 (2003) 094013

Involvement of the two "universal" gluon distributions in various processes:

	DIS and DY	SIDIS	hadron in pA	photon-jet in pA	Dijet in DIS	Dijet in pA
$G^{(1)}$ (WW)	×	×	×	×	\checkmark	\checkmark
$G^{(2)}$ (dipole)	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark

Dominguez et al.: "The large N_c limit is essential in order to eliminate other nonuniversal distributions or correlators in other different dijet channels, i.e., $qg \rightarrow qg$, $gg \rightarrow q^{-}q$ and $gg \rightarrow gg$ in pA collisions"

Gluon polarization at small x

	DIS and DY	SIDIS	hadron in pA	photon-jet in pA	Dijet in DIS	Dijet in pA
h_1^\perp (WW)	×	×	×	×	\checkmark	\checkmark
h_1^{\pm} (dipole)	X	X	X	X	×	\checkmark

DIS, DY, SIDIS, hadron and γ +jet in pA are in leading power not sensitive to $h_1^{\perp g}$

D.B., Mulders, Pisano, PLB 660 (2008) 360

$$h_{1,WW}^{\perp g} \ll f_{1,WW}^{\perp g} \quad \text{for } k_{\perp} \ll Q_s,$$

Metz, Zhou, 2011

$$h_{1,WW}^{\perp g} \neq 2f_{1,WW}^{\perp g} \quad \text{for } k_{\perp} \gg Q_s$$

Since there are so different expectations inside and outside the saturation region, it would thus be very interesting to study dijet DIS at a high-energy EIC Pisano, D.B., Brodsky, Buffing & Mulders, JHEP 10 (2013) 024

Note: for dijet in DIS the result does not require large N_c

Dijet in DIS is also the golden channel for the gluon Sivers effect at EIC

Nonuniversality

For dijet in pA the result does require large N_c . More generally there are 5 TMDs:

$$h_1^{\perp g[U]}(x, p_T^2) = h_1^{\perp g(A)}(x, p_T^2) + \sum_{c=1}^4 C_{GG,c}^{[U]} h_1^{\perp g(Bc)}(x, p_T^2)$$

Note: without ISI/FSI it can still be nonzero

Buffing, Mukherjee, Mulders, 2013

Small x

What about TMD factorization breaking in pA to dijets?

In the small-x limit factorization breaking contributions may become suppressed

for nearly back-to-back di-jets ($q_\perp\equiv |k_\perp+k_\perp'|\ll |k_\perp|, |k_\perp'|\equiv P_\perp~$) :

"One-Loop Factorization for Inclusive Hadron Production in p-A Collisions in the Saturation Formalism", Chirilli, Xiao, Yuan, PRL 108 (2012) 122301

Conclusions

Conclusions

- Significant recent developments on TMD factorization and evolution:
 - New TMD factorization expressions [Collins, 2011 & Echevarria-Idilbi-Scimemi, 2012]
 - Improvements through resummations to NNLL level [Echevarria et al., 2013/4]
- Consequences of TMD evolution has been studied (to varying levels of accuracy) for Higgs production including the effect of linear gluon polarization
- TMD evolution calculations find 2-5% level contributions from linearly polarized gluons at Higgs mass scale
- Effect of linearly polarized gluons at Higgs mass scale smaller than current cross section uncertainty (NNLL+NNLO), also pT resolution below 10 GeV poor
- Future data from LHC on $\chi_{c/b0}$ and $\eta_{c/b}$ production and from heavy quark pair or dijet production in DIS at a high-energy EIC can shed light on $h_1^{\perp g}$ effects
- Comparison of small and large x especially interesting

Back-up slides

Scale dependence of TMDs

QCD corrections will also attach to the Wilson line, which needs renormalization This determines the change with renormalization scale μ

Wilson lines not smooth → cusp anomalous dimension [Polyakov '80; Dotsenko & Vergeles '80; Brandt, Neri, Sato '81; Korchemsky, Radyushkin '87]

As a regularization of rapidity/LC divergences of a *lightlike* Wilson line, in JCC's TMD factorization the path is taken off the lightfront, the variation in rapidity determines the change with ζ

$$\tilde{f}^{[\mathcal{U}]}(x, b_T^2; \zeta, \mu)$$

Two important consequences:

- yields energy evolution of TMD observables
- allows for calculation of the TMDs on the lattice Musch, Hägler, Engelhardt, Negele & Schäfer, 2012

Comparing TMD and DGLAP evolution

At small Q S_{NP} dominates the evolution

For larger Q the evolution becomes perturbative

Difference between DGLAP and TMD evolution is large in this limited range of Q: from 1.5 to 4.5 GeV

Anselmino, Boglione, Melis PRD 86 (2012) 014028

All curves evolved from $Q^2 = 1 \text{ GeV}^2$

Angular independent cross section is of the form:

Here a model function for $h_1^{\perp g}$ is used that is close to its bound for larger q_T

Effects on Higgs production

Modification of the transverse momentum distribution

Polarization allows one to distinguish between spin-0 and spin-2 Higgs boson possibilities (more options than currently with Monte Carlo studies)

 $o^{\scriptscriptstyle -}$ and $\mathbf{2}_{m^+}$ are essentially excluded by LHC already

 $gg \rightarrow \gamma \gamma$ $\int d\phi \frac{d\sigma}{d^4 q d\Omega} \propto \left| 1 + \frac{F_2}{F_1} R(q_T) \right|$

Discernable only in a narrow region around the Higgs mass (here: m_H =120 GeV) [DB, Den Dunnen, Pisano, Schlegel, Vogelsang, '12]

$$gg \rightarrow \gamma \gamma$$

$$\int d\phi \frac{d\sigma}{d^4 q d\Omega} \propto \left[1 + \frac{F_2}{F_1} R(q_T)\right]$$

