The Qweak Experiment: Early Results and Outlook

Scott MacEwan

University of Manitoba

(For the Qweak Collaboration)

6th Workshop of the APS Topical Group on Hadronic **Physics** April 8th-10th, 2015

Outline

- Motivation
- •Qweak apparatus
- Early Results
- Recent Progress
- Results & Conclusion

Motivation and Formalism

The Electroweak Interaction

•The proton's weak charge is highly suppressed in the standard model. A high precision measurement could be sensitive to certain types of

new parity-violating physics!

$$\mathcal{L}_{SM}^{PV} = -\frac{G_F}{\sqrt{2}} \overline{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \overline{q} \gamma^{\mu} q$$
$$Q_W^p = -2(2C_{1u} + C_{1d})$$

		$Q_{ m EM}$	$Q_{ m weak}$	
	q_u	$+\frac{2}{3}$	$+1-rac{8}{3}\sin^2 heta_Wpprox$ 0.38	
	q_d	$-rac{1}{3}$	$-1+rac{4}{3}\sin^2 heta_Wpprox-0.69$	
Ì	Р	+1	$+1-4\sin^2\theta_W \approx 0.07$	suppression
	n	0	-1	4

Parity-Violating Electron Scattering

Scattering amplitudes will have both EM and weak contributions.

$$\sigma \propto \left| M_{\rm EM}^{\rm PC} + M_{\rm weak}^{\rm PV} \right|^2 = \left| M_{\rm EM}^{\rm PC} \right|^2 + 2M_{\rm EM}^{\rm PC} M_{\rm weak}^{*\rm PV} + \left| M_{\rm weak}^{\rm PV} \right|^2$$

• Measure the parity-violating asymmetry:

$$A_{\mathrm{PV}} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{2M_{\mathrm{EM}}^{\mathrm{PC}*}M_{\mathrm{weak}}^{\mathrm{PV}}}{\left|M_{\mathrm{EM}}^{\mathrm{PC}}\right|^2} \sim -220 \mathrm{\ ppb}$$

Parity-Violating Electron Scattering

Left-right helicity asymmetry for protons:

$$A_{\rm ep} = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \right] \times \left[\frac{\epsilon G_E^{\gamma} G_E^Z + \tau G_M^{\gamma} G_M^Z + g_V^e \epsilon' G_M^{\gamma} G_A^Z}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2} \right]$$

$$\epsilon = \frac{1}{1 + 2(1 + \tau)\tan^2\frac{\theta}{2}} \quad \epsilon' = \sqrt{\tau (1 + \tau)(1 - \epsilon^2)} \quad \tau = \frac{Q^2}{4M_p^2}$$

• As $Q^2 \rightarrow 0$ and $\theta \rightarrow 0$:

$$A_{\rm ep}
ightarrow rac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \left[Q_W^p + Q^2 B(Q^2, \theta) \right]$$

Hadronic structure
Constrained by older PVES data

Apparatus

Q-weak Apparatus

Ouartz Cerenkov Bars

Horizontal

Drift Chambers

Parameters: E beam = 1.165 GeV $<Q^2> = 0.025 \text{ GeV}^2$ $<\theta> = 7.9^{\circ} \pm 3^{\circ}$ φ -coverage = 50% of 2π

Integrated Rate = 6.4 GHz

P beam = 88%

Target Length = 35 cm

Cryopower = 3 kW

LH₂ **Target**

Toroidal Magnet **Spectrometer**

Vertical Drift Chambers

Liquid Hydrogen Target

- -35 cm long. Aluminum housing with high purity thin target windows
- Designed using computational fluid dynamics...a new procedure for JLab!
- Dissipated ~3 kW of power
 - The world's highest power **LH2** cryotarget!

Apr 05, 2009

FLUENT 12.0 (3d, dp, pbns, rke)

-2.64e+00

Contours of X Velocity (m/s)

Main Detectors

- Quartz bar Cherenkov detectors (200 cm x 18 cm). 2 PMT's each
- Radiation hard, low scintillation, uniform response.
- 13 cm diameter PMTs on either end. Swappable bases:
 - Counting mode High gain (JLab)
 - Integrating mode Low gain (Manitoba)
 - Pb pre-radiators to provide low-E shielding and boost signal.
 - 800 MHz per bar in int. mode.

Polarimetry

- Known analyzing power from polarized Fe foil in high B-field
- New Compton polarimeter
 - Non-invasive
 - Known analyzing power from circularly-polarized laser

Early Result

Extracting A from A m

False Asymmetries

$$A_{\text{msr}} = A_{\text{raw}} + A_{reg} + A_T + A_L$$

 $A_{\rm reg}$ = Linear Regression

 A_T = Transverse Asymmetry

 A_L = Detector Non-linearity

Background Asymmetries

$$A_{\text{ep}} = R_{\text{tot}} \frac{\left(\frac{A_{\text{msr}}}{P} - \sum_{i=0}^{4} f_i A_i\right)}{1 - \sum_{i=0}^{4} f_i}$$

i	
1	Al windows
2	Beamline bkgd
3	Soft neutrals
4	$N \rightarrow \Delta$

Extracting A from A m

4% of total Qweak data set result:

$$A_{\rm ep} = -279 \pm 35({\rm stat}) \pm 31({\rm sys}){\rm ppb}$$

Extraction Details

- •5 parameter fit using PVES data up to Q²=0.63 (GeV/c)² HAPPEX, SAMPLE, G0, PVA4, Q-weak $C_{1\{u,d\}},~\rho_s,~\mu_s,~G_A^{Z(T=1)}$ HAPPEX, SAMPLE, G0, PVA4, Q-weak $Q_W^p = -2(2C_{1u} + C_{1d})$
- •Result is a function of $A_{\rm ep}$ in Q² and θ .
- -Kelly form factors used, including conventional dipole form for strange quark form factors: $G_D = \frac{1}{(1+\frac{Q^2}{\lambda^2})^2}, \quad \lambda = 1 \left(\frac{\text{GeV/c}}{\text{C}} \right)^2$

$$\left(1 + \frac{4}{\lambda^2}\right)^2$$

$$G_E^s = \rho_s Q^2 G_D \quad G_M^s = \mu_s G_D$$

 ${ullet} G_A^{Z(T=0)}$ is constrained by past calculations.

Reduced Asymmetry

•Rotate point to θ =0 in order to show on one plot:

$$A^{\text{data}}(\theta = 0, Q^2) = A^{\text{data}}(\theta^{\text{data}}, Q^2) - \left[A^{\text{fit}}(\theta^{\text{data}}, Q^2) - A^{\text{fit}}(\theta = 0, Q^2)\right]$$

- Negligible effect when making cuts on Q² for this result.
- •Correct *all* ep data for $\square_{\gamma Z}$ energy and Q^2 dependences.

Recent Progress

Polarimetry (Preliminary)

- Systematic uncertainties:
 - Compton dP/P = 0.59%
 - Møller dP/P = 0.84%
- Both techniques agree to <0.8%</p>
- •Final results to use using Compton with comparison to Møller to improve normalization uncertainty.

Normalization uncertainty bands

- ightharpoonup PMoller +/- stat (inner) +/- point-to-point systematic (0.53%) 19
- PCompton +/- stat +/- point-to-point syst. (0.41%)

Q² Measurement (θ Determination)

- Dominant uncertainty:
 - θ determination
- Data from Tracking system.
- GEANT4 simulation & data analyzed with the same code.

<θ>: Data and simulation currently agree to <0.5%

$$Q^{2} = 2E^{2} \frac{(1 - \cos \theta)}{1 + \frac{E}{M}(1 - \cos \theta)}$$

Aluminum

- Large PV asymmetry:
 - ~2 ppm (compared to ~-220ppb!)
- More Al data analyzed:
 - 180ppb → 70ppb
- Systematics also to improve over initial PRL2013 result.

Ongoing analysis improvements to extraction of the aluminum dilution as well. $f_1 \approx 3.2\%$

Beamline Backgrounds

Highest contribution to systematic uncertainty for the PRL2013 result.

- Background from electrons scattering on beamline or tungsten plug collimator.
- •Thought to be associated with large asymmetries on outer part of the beam ("halo").
- -Yield fraction on Main Detector measured directly by blocking primary e⁻ on two octants:

 $f_{b2}^{\text{MD}} \approx 0.19\%$

- Background detectors in various locations monitored this component and measured highly correlated asymmetries.
- Scaling of background asymmetries also consistent with expectation from dedicated measurement.

Blinded Asymmetries

Qweak Run 2 - Blinded Asymmetries

(statistics only - not corrected for beam polarization, AI target windows, ΔQ^2 , etc.)

Regressed = -160.9 ± 7.6
(
$$\chi^2$$
/ NDF = 1.19, Prob = 0.18)

Data Set #

Raw =
$$4.7 \pm 7.7$$

(χ^2 / NDF = 1.84, Prob = 0.001)

Regressed =
$$7.9 \pm 7.7$$

($\chi^2/NDF = 1.38$, Prob = 0.048)

Beamline
Bkgd Corrected = -1.4 ± 7.7
(
$$\chi^2$$
/ NDF = 1.29, Prob = 0.097) 23

Electromagnetic Form Factor Sensitivity

-Compute Qp, using a "perfect" SM asymmetry at our kinematics with 4 different EMFF's:

EMFF Fit	Q^p_W	dQ^p_W
Arrington & Sick	0.0705	0.0023
Kelly	0.0702	0.0023
Simple Dipole	0.0702	0.0022
Friedrich & Walcher	0.0683	0.0022

- -What about errors on EMFF's?
 - Compute Q^p_w 1000 times varying FF's within errors provided by fit authors.
 - Arrington & Sick most appropriate for our low Q² in fit methodology AND error analysis.

J. Friedrich and Th. Walcher. EPJ A 17(4):607–623, 2003.

J. Kelly. Phys. Rev. C, 70:068202, 2004

John Arrington and Ingo Sick. Phys. Rev. C, 76:035201, 2007.

Electromagnetic Form Factor Sensitivity

- -Efforts ongoing...study using the "perfect" asymmetry point.
- -Use RMS width of Q_w^p distribution to quantify error from EMFF's
- 1.6% fractional uncertainty on Q^p_w using Arrington & Sick.

Conclusion

• Initial results already available in 2013PRL:

$$A_{\text{ep}} = -279 \pm 35(\text{stat}) \pm 31(\text{sys})\text{ppb}$$
 $Q_W^p = 0.064 \pm 0.012$ $C_{1u} = -0.1835 \pm 0.0054$ $C_{1d} = +0.3355 \pm 0.0050$

- Finalizing analysis efforts being made on polarimetry, kinematics, backgrounds, extraction methodology...
- Large bounty of physics results from primary and ancillary measurements (aluminum, transverse, alternate kinematics...).
- Final result expected <u>SOON</u>

Thank You

- ¹ University of Zagreb
- ² College of William and Mary
- ³ Yerevan Physics Institute
- ⁴ MIT
- ⁵ JLab
- ⁶ Ohio University
- ⁷ Christopher Newport University
- 8 University of Manitoba
- ⁹ University of Virginia
- ¹⁰ TRIUMÉ
- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Tech
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College
- ²³ University of Adelaide
- ²⁴ Syracuse University

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ K. Bartlett,² J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,⁶ J. Birchall,⁶ R.D. Carlini,⁵,², G.D. Cates,⁶ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁶ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁶ J.M. Finn,², T. Forest,¹⁵, ¹⁶ D. Gaskell,⁵ M.T.W. Gericke,⁶ J. Grames,⁵ V.M. Gray,² K. Grimm,¹⁶, ² F. Guo,⁴ N. Hait,¹⁶ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁶ M. Jones,⁶ R. Jones,¹ħ M. Kargiantoulakis,⁶ P.M. King,⁶ E. Korkmaz,¹⁶ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,⁶,², L. Lee,¹⁰, S. MacEwan,⁶ D. Mack,⁶ J.A. Magee,² R. Mahurin,⁶ J. Mammei,¹³, J.W. Martin,¹ゅ M.J. McHugh,²⁰ D. Meekins,⁶ J. Mei,⁶ R. Michaels,⁶ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰, A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁰ Nuruzzaman,¹¹, ¹² W.T.H van Oers,¹⁰, ⁶ A.K. Opper,²⁰ S.A. Page,⁶ J. Pan,⁶ K.D. Paschke,⁰ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁶ J.F. Rajotte,⁴ W.D. Ramsay,¹⁰, ⁶ J. Roche,⁶ B. Sawatzky,⁶ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,ゅ N. Simicevic,¹⁶ G.R. Smith,⁶ P. Solvignon,⁶ D.T. Spayde,²² A. Subedi,²⁰ R. Suleiman,⁶ V. Tadevosyan,³ W.A. Tobias,⁰ V. Tvaskis,¹⁰, ⁶ B. Waidyawansa,⁶ P.

Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ P. Zang,²⁴ and S. Zhamkochyan ³

Polarized Source

$Sin^2\theta_w$

Quark Couplings

- •L_{NC} separates the individual quark contributions.
- •Qweak sensitive to vector couplings $C_{1\{u,d\}}$
- Using all world data, extract couplings:

$$C_{1u} = -0.1835 \pm 0.0054$$

$$C_{1d} = +0.3355 \pm 0.0050$$

Electromagnetic Form Factor Sensitivity

- •Compute QpW 1000 times, varying the EMFF's within errors quoted by the fit authors.
- Ongoing analysis! Kelly width is very sensitive to:
 - Asymmetry point
 - Strangeness parameterization

Kelly EMFF Errors

Arrington&Sick EMFF Errors

Raw Asymmetry

```
APV = -279 \pm 35 (statistics) \pm 31 (systematics) ppb <Q2> = 0.0250 \pm 0.0006 (GeV/c)2 <E> = 1.155 \pm 0.003 GeV
```


Teaser to Final Result

SIMULATED FIT SIMULATED FIT SIMULATED FIT

Assumes anticipated final uncertainties and SM result.

A fake Qweak point with an estimated final error bar at the SM value.

Radiative Corrections: yZ-Box

$$Q_W^p = \left[\rho_{\rm NC} + \Delta_e\right] \left[1 - 4\sin^2\hat{\theta}_W(0) + \Delta_e'\right] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$$

- •Significant energy-dependent correction
 - Identified by Gorchtein and Horowitz in 2009, extensive studies since.
- •Hall et al (Phys.Rev.D 88, 013011, 2013)
 - Constrains model-dependence using parton distribution functions and recent JLab PV data.
 - 7.8±0.5% shift of SM value of Q_W^p .

Raw Asymmetry

Q²-Dependent yZ-Box Correction

