Estia Eichten (Fermilab)

Outline:

- Revisiting the QCD Multipole Expansion
- Hadronic Transitions Above Threshold
- New Dynamics for Hadronic Transitions
- Systematics and Expectations
- Summary

6th Workshop of the APS Topical Group on Hadronic Physics

April 8-10, 2015, Baltimore, MD

Revisiting the QCDME Assumptions

- QCD multipole expansion (QCDME) in a nutshell
 - Analogous to the QED multipole expansion with gluons replacing photons.

- color singlet physical states means lowest order terms involve two gluon emission. So lowest multipoles E1 E1, E1 M1, E1 E2,
- factorize the heavy quark and light quark dynamics

$$\mathcal{M}(\Phi_i \to \Phi_f + h) = \frac{1}{24} \sum_{KL} \frac{\langle f | d_m^{ia} | KL \rangle \langle | KL | d_{ma}^j | i \rangle}{E_i - E_{KL}} \langle h | \mathbf{E}^{ai} \mathbf{E}_a^j | 0 \rangle + \text{higher order multipole terms.}$$

- assume a model for the heavy quarkonium states Φ i, Φ f and a model for the intermediate states |KL> hybrid states.
- use chiral effective lagrangians to parameterize the light hadronic system.

В

QCD Multipole Expansion

• Below threshold this theory works well to describe the hadronic transitions.

- The transition rates are small.
- Heavy-quark symmetry (HQS) dictates that the leading transitions do not flip the spin of the heavy quarks (as it is for the usual EM transitions in nonrelativistic systems).
- Isospin breaking is suppressed.
- A few puzzles remain.

N. Brambilla, et al., Eur. Phys. J. C71 (2011) 1534

Transition	Γ_{partial} (keV) (Experiment)	$\Gamma_{\text{partial}} \text{ (keV)}$	
a/(2S)	(Experiment)		
$ \begin{array}{l} \rightarrow J/\psi + \pi^{+}\pi^{-} \\ \rightarrow J/\psi + \eta \\ \rightarrow J/\psi + \pi^{0} \\ \rightarrow h_{c}(1P) + \pi^{0} \end{array} $	$\begin{array}{c} 102.3\pm3.4\\ 10.0\pm0.4\\ 0.411\pm0.030\ [446]\\ 0.26\pm0.05\ [47] \end{array}$	input (C_1) input (C_3/C_1) 0.64 [522] 0.12-0.40 [527]	
$\psi(3770)$			
	$\begin{array}{c} 52.7\pm7.9\\ 24\pm11 \end{array}$	input (C_2/C_1)	
$\psi(3S) \to J/\psi + \pi^+\pi^-$	< 320 (90% CL)		
$\Upsilon(2S)$			
$\rightarrow \Upsilon(1S) + \pi^+ \pi^-$ $\rightarrow \Upsilon(1S) + \eta$	5.79 ± 0.49 $(6.7 \pm 2.4) \times 10^{-3}$	$\begin{array}{c} 8.7 \ [{\color{red}{528}}] \\ 0.025 \ [{\color{red}{521}}] \end{array}$	
$\Upsilon(1^3D_2)$			
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	0.188 ± 0.046 [63]	$0.07 \ [529]$	
$\chi_{b1}(2P)$			
	$\begin{array}{c} 0.83 \pm 0.33 [\textbf{523}] \\ 1.56 \pm 0.46 \end{array}$	0.54 [<mark>530</mark>]	
$\chi_{b2}(2P)$			
$ \rightarrow \chi_{b2}(1P) + \pi^+ \pi^- \rightarrow \Upsilon(1S) + \omega $	$\begin{array}{c} 0.83 \pm 0.31 \ [\textbf{523}] \\ 1.52 \pm 0.49 \end{array}$	0.54 [<mark>530</mark>]	
$\Upsilon(3S)$			
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	0.894 ± 0.084	1.85 [52 8]	
$\rightarrow \Upsilon(1S) + \eta$	$< 3.7 \times 10^{-3}$	0.012 [521]	
$\rightarrow 1(2S) + \pi^+\pi^-$	0.498 ± 0.065	0.86 [528]	
$\Upsilon(4S)$			
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	1.64 ± 0.25	4.1 [528]	
$\rightarrow 1(1S) + \eta$ $\rightarrow \Upsilon(2S) + \pi^+\pi^-$	4.02 ± 0.04 1 76 + 0 34	1 4 [598]	

QCD Multipole Expansion (QCDME)

Hadronic Transitions Above Threshold

- With BaBar, BES III, LHCb, BELLE and (CMS, ATLAS, CDF/DO) many new details of hadronic transitions have been observed.
- A clearer theoretical understanding hadronic transitions for quarkonium-like states above threshold should now be possible.
- However there are many the questions which arise as well:
 - The QCD Multipole Expansion fails above threshold. Why and how?
 - What are the remaining constraints of Heavy Quark Symmetry?
 - What explains the large rate of transitions for some states above threshold?
 - Can the pattern of transitions be understood?
 - Can detailed predictions be made?
- First let's look at the details of the transitions.

Hadronic Transitions Above Threshold

- Bottomonium systems:
- Y(4S)
 - $M = 10,579.4 \pm 1.2 \text{ MeV} \Gamma = 20.5 \pm 2.5 \text{ MeV};$
 - Open decay channels:
 - $M(B^+B^-) = 10,578.52 \text{ MeV}, M(B^0\overline{B^0}) = 10,579.16 \text{ MeV}$
 - Essentially no isospin breaking in the masses.
 - Normal pattern of 2π decays, large η decays:

Table 1: Selected $\Upsilon(4S)$ decays.

Decay Mode	Branching Rate
B^+B^-	$(51.4 \pm 0.6)\%$
$B^0 ar{B}^0$	$(48.6 \pm 0.6)\%$
total $B\bar{B}$	> 96%
$\Upsilon(1S) \ \pi^+\pi^-$	$(8.1 \pm 0.6) \times 10^{-5}$
$\Upsilon(2S) \ \pi^+\pi^-$	$(8.6 \pm 1.3) \times 10^{-5}$
$h_b(1P) \pi^+\pi^-$	(not seen)
$\Upsilon(1S)$ η	$(1.96 \pm 0.28) \times 10^{-4}$
$h_b(1P)$ η	$(1.83 \pm 0.23) \times 10^{-3}$

-> partial rate = 1.66 ± 0.23 keV

Heavy Quark Symmetry

- Large heavy quark spin symmetry breaking induced by the B*- B mass splitting. [Same for D^*-D and $D_s^*-D_s$]
 - Coupled channel calculations show a large virtual B B component to the $\Upsilon(4S)$. This accounts for the observed violation of the spin-flip rules of the usual QCDME.
 - $J^{PC} = 1^{--}$ in terms of B(*), B(*) mass eigenstates:

•
$$\mathbf{J}_{\mathsf{SLB}} = \mathbf{j}_{\mathsf{SLB}} + \mathbf{L}$$

 $B\bar{B} : \frac{1}{2\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} + \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12} + \frac{1}{2}\psi_{01};$
 $\frac{B^*\bar{B} - \bar{B}^*B}{\sqrt{2}} : \frac{1}{\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12};$
 $(B^*\bar{B}^*)_{S=0} : -\frac{1}{6}\psi_{10} - \frac{1}{2\sqrt{3}}\psi_{11} - \frac{\sqrt{5}}{6}\psi_{12} + \frac{\sqrt{3}}{2}\psi_{01};$
 $(B^*\bar{B}^*)_{S=2} : \frac{\sqrt{5}}{3}\psi_{10} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{11} + \frac{1}{6}\psi_{12}.$

 $\psi_{10} = 1_H^{--} \otimes 0_{SLB}^{++}, \quad \psi_{11} = 1_H^{--} \otimes 1_{SLB}^{++}, \quad \psi_{12} = 1_H^{--} \otimes 2_{SLB}^{++}, \text{ and } \psi_{01} = 0_H^{-+} \otimes 1_{SLB}^{+-}.$

- $I^{G}(J^{P}) = 1^{-}(1^{+})$
 - S-wave (L=0)

$$(B^*\bar{B} - \bar{B}^*B) \sim \frac{1}{\sqrt{2}} \left(0^-_H \otimes 1^-_{SLB} + 1^-_H \otimes 0^-_{SLB} \right) B^*\bar{B}^* \sim \frac{1}{\sqrt{2}} \left(0^-_H \otimes 1^-_{SLB} - 1^-_H \otimes 0^-_{SLB} \right) ,$$

Voloshin [arXiv:1201.1222]

Hadronic Transitions Above Threshold

- Υ(5S) hadronic transitions
 - $M = 10,876 \pm 11 \text{ MeV } \Gamma = 55 \pm 26 \text{ MeV};$
 - Open Ground State $(j^p = \frac{1}{2})$ Decay Channels:
 - $M(BB) = 10,559 \text{ MeV}, M(B^*B) = 10,604 \text{ MeV}, M(B^*B^*) = 10,650 \text{ MeV}$
 - $M(B_s \overline{B_s}) = 10,734 \text{ MeV}, M(B_s \overline{B_s}) = 10,782 \text{ MeV}, M(B_s \overline{B_s}) = 10,831 \text{ MeV}$
 - Also some P state $(j^p = \frac{1}{2})$ Decay Channels are essentially open
 - M(B[1^{1/2+}P₀]B*) = 11,055 MeV (notation: n^{jP}L_J)
 - $M(B[1^{\frac{1}{2}+}P_1]B) = 11,045 \text{ MeV}, M(B[1^{\frac{1}{2}+}P_1]B^*) = 11,091 \text{ MeV}$
 - I have assumed: $\Gamma(B[1^{\frac{1}{2}}+P_{\{0,1\}}]) \sim 300 \text{ MeV} (wide); \Gamma(B[1^{3/2}+P_{\{1,2\}}])$ are narrow

B

APS-GHP@Baltimore

Hadronic Transitions Above Threshold

Estia Eichten (Fermilab)

- $\Upsilon(5S)$ decay pattern:

Decay Mode	Branching Rate	Decay Mode	Branching Rate	
$B\bar{B}$	$(5.5 \pm 1.0)\%$	$\Upsilon(1S) \pi^+\pi^-$	$(5.3 \pm 0.6) \times 10^{-3}$	-> partial rate = 0.29 ± 0.13 N
$B\bar{B}^* + c.c.$	$(13.7 \pm 1.6)\%$	$\Upsilon(2S) \ \pi^+\pi^-$	$(7.8 \pm 1.3) \times 10^{-3}$	
$B^*\bar{B}^*$	$(38.1 \pm 3.4)\%$	$\Upsilon(3S) \ \pi^+\pi^-$	$(4.8 \ ^{+1.9}_{-1.7}) \times 10^{-3}$	
		$\Upsilon(1S)K\bar{K}$	$(6.1 \pm 1.8) \times 10^{-4}$	
$B_s \bar{B}_s$	$(5\pm5)\times10^{-3}$	$h_b(1P)\pi^+\pi^-$	$(3.5 \ ^{+1.0}_{-1.3}) \times 10^{-3}$	
$B_s\bar{B}_s^* + c.c.$	$(1.35 \pm 0.32)\%$	$h_b(1P)\pi^+\pi^-$	$(6.0 \ ^{+2.1}_{-1.8}) \times 10^{-3}$	
$B_s^* \bar{B}_s^*$	$(17.6 \pm 2.7)\%$	$\chi_{b1} \pi^+\pi^-\pi^0 $ (total)	$(1.85 \pm 0.33) \times 10^{-3}$	
$Bar{B}\pi$	$(0.0 \pm 1.2)\%$	$\chi_{b2} \pi^+\pi^-\pi^0 $ (total)	$(1.17 \pm 0.30) \times 10^{-3}$	
$B^*\bar{B}\pi+B\bar{B}^*\pi$	$(7.3 \pm 2.3)\%$	χ_{b1} ω	$(1.57 \pm 0.32) \times 10^{-3}$	-> partial rate - 86 + 41 keV
$B^*\bar{B}^*\pi$	$(1.0 \pm 1.4)\%$	χ_{b2} ω	$(0.60 \pm 0.27) \times 10^{-3}$	\rightarrow partial rate - 00 \pm \pm 1 keV
$B\bar{B}\pi\pi$	< 8.9%	$\Upsilon(1S)\eta$	$(0.73 \pm 0.18) \times 10^{-3}$	
		$\Upsilon(2S)\eta$	$(2.1 \pm 0.8) \times 10^{-3}$	
		$\Upsilon(1D)\eta$	$(2.8 \pm 0.8) \times 10^{-3}$	partial rate = 0.15 ± 0.08 N
total $B\bar{B}X$	$(76.2 \ ^{+2.7}_{-4.0})\%$			L

Table 2: Selected $\Upsilon(5S)$ decays.

- Very large 2π hadronic transitions [> 100 times $\Upsilon(4S)$ rates]
- Very large η (single light hadron) transitions. Related to nearby B_s*B_s* threshold?

Hadronic Transitions Above Threshold

- Contributions of P-state decays:
 - $n^{3}S_{1}(Q\bar{Q}) \rightarrow 1^{\frac{1}{2}+}P_{J}(Q\bar{q}) + 1^{\frac{1}{2}-}S_{J'}(q\bar{Q})$:

S-wave decays

C(J, J')	J' = 0	J' = 1
J = 0	0	2/3
J = 1	2/3	4/3

• $1^{\frac{1}{2}} P_J(Qq) \rightarrow 1^{\frac{1}{2}} S_{J'}(Qq') + {}^{1}S_0(qq')$ for S-wave J=J'

Remarks:

- (1) $\Upsilon(55)$ strong decay is S-wave
- (2) The large width of the $B_1(1P)$ implies that the first π is likely emitted while the $B_1(1P)$ and $B^{(*)}$ are still nearby.
- (3) The $B_1(1P)$ decay is S-wave
- (4) Therefore the B^(*) B* system is in a relative S-wave and near threshold.
- (5) No similar BB system is possible.

- A new factorization for hadronic transitions above threshold.
 - Production of a pair of heavy-light mesons ($H'_1 H_2$) near threshold. Where $H'_1 = H_1$ or H'_1 decays rapidly to H_1 + light hadrons (h_b), yielding $H_1 H_2 < h_b >$
 - Followed by recombination of this $(H_1 H_2)$ state into a narrow quarkonium state (Φ_f) and light hadrons (h_a) .

- Here we need not speculate on whether the observed rescattering is caused by a threshold bound state, cusp, or other dynamical effect.

F.K. Gao, C. Hanhart, Q. Wang, Q. Zhao [arXiv:1411.5584]

- Production modes
 - e+e-

- B decays

- Physical Expectations for Threshold Dynamics:
 - 1. There is a large rescattering probability per unit time into light hadrons and quarkonium states for two heavy light mesons both near threshold and nearby in position.
 - 2. For direct decays of a quarkonium resonance: New S-wave channels peak rapidly near threshold. This is an expected property of the decay amplitudes into two narrow two heavy mesons and is an explicit feature of coupled channel calculations.
 - 3. For sequential decays: the strong scattering dynamics of two narrow heavy-light mesons is peaked near threshold for S-wave initial states.

- Strong threshold dynamics
 - Strong peaking at threshold BB* and B*B*
 - Z+(10610) and Z+(10650) states

$$\frac{\mathcal{B}(Z_b(10650) \to B^*B^*)}{\sum_n \mathcal{B}(Z_b(10650) \to \Upsilon(nS)\pi) + \sum_m Z_b(10650) \to h_b(mP)} = 2.8 \pm 0.4 \pm 0.6^{+0.0}_{-0.4}.$$

- HQS implies that the same mechanism applies for charmonium-like states

Heavy-Light Mesons

- Observed low-lying (15, 1P, and 1D) charm and bottom mesons:
 - Very similar excitation spectrum HQS

Charm Meson Spectrum

Bottom Meson Spectrum

- There are 9 narrow (< 2 MeV) charm meson states [and 10 bottom mesons states].
 Any pair of these might have a cusp at S-wave threshold.
- The wide states can originate sequential decay chains.

Systematics and Expectations

- Charmonium-like states: $e^+e^- \rightarrow \pi^+ \pi^- J/\psi$ at $\int s = 4.26 \ GeV$ [Y(4260)]
- Z_c(3885), Z_c(4020) both have I^G(J^P) = 1⁻(1⁺).
- As expected by HQS between the bottomonium and charmonium systems

BES III [arXiv:1310.1163]

)4 C²`

2.06

Ψ(3770), Ψ(4040)

• Only ground state heavy-light meson pair decays allowed

400 $D_s D_s^{*}$ 300 $\psi(4040)$ D^*D^* (Mass $-\psi(3770)$) (MeV) 200 $D_s D_s$ DD^* 100 $\psi(3770)$ 0 DD-100

 $\psi(3770)$ nearby thresholds

Systematics and Expectations

- Charmonium systems:
- Ψ(1D)
 - M = 3773.15 ± 0.33 MeV Γ = 27.2 ± 1.1 MeV;
 - Open decay channels:
 - M(D⁰D⁰) = 3,729.72 MeV, M(D⁺D⁻) = 3,739.26 MeV
 - Normal pattern

Decay Mode	Branching Rate	
$D^0 \bar{D}^0$	$(52 \pm 5)\%$	
D^+D^-	$(41 \pm 4)\%$	
total $D\bar{D}$	$93_{-9}^{+8}\%$	
$\psi(1S) \ \pi^+\pi^-$	$(1.93 \pm 0.28) \times 10^{-3}$	
$\psi(1S) \ \eta$	$(9\pm4)\times10^{-4}$	

->	partial	rate =	52.5 ±	7.6	keV
----	---------	--------	--------	-----	-----

- Puzzle is the total DD branching fraction

Systematics and Expectations

Ψ(3S)

- $M = 4039 \pm 1 \text{ MeV}$ $\Gamma = 80 \pm 10 \text{ MeV};$
- Open decay channels:
 - $M(D^0\overline{D^0}) = 3,729.72 \text{ MeV}, M(D^+D^-) = 3,739.26 \text{ MeV}$
 - $M(D^{0}D^{*0}) = 3,871.85 \text{ MeV}, M(D^{+}D^{*-}) = 3,879.92 \text{ MeV}$
 - M(D_s⁺D_s⁻) = 3,937. MeV
 - M(D*⁰D^{*0}) = 4,013.98 MeV, M(D*⁺D*⁻) = 4,020.58 MeV

Table 4: Selected $\psi(3S)$ decays.

Decay Mode	Branching Rate
$D * \bar{D} *$	
$D_s^+ D_s^- * + c.c.$	
DD*	$\frac{\Gamma(D*\bar{D}+c.c.)}{\Gamma(D*\bar{D}*)} = 0.34 \pm 0.14 \pm 0.05$
$D\bar{D}$	$\frac{\Gamma(D*\bar{D}+c.c.)}{\Gamma(D*\bar{D}*)} = 0.02 \pm 0.03 \pm 0.02$
$\psi(1S) \ \eta$	$(5.2 \pm 0.7) \times 10^{-3}$

Charm threshold region has very large induced HQS breaking effects due to spin splitting in j_1 heavy-light multiplets

Systematics: $\psi(4040)$ and Below

• Charmonium-like state transitions for masses at or below the $\psi(3S)$

State	Mass	Width	J^{PC}	Comments
	Transition Observed	Branching Fraction		
$\psi(3770)$	$\begin{array}{c} 3773.15 \pm 0.33 \\ \pi^{+}\pi^{-}J/\psi \\ \pi^{0}\pi^{0}J/\psi \\ \eta J/\psi \end{array}$	$\begin{array}{c} 27.2 \pm 1.0 \\ (1.93 \pm 0.28) \times 10^{-3} \\ (8.0 \pm 3.0) \times 10^{-4} \\ (9 \pm 4) \times 10^{-4} \end{array}$	1	$1^{3}D_{1}$
X(3872)	$\begin{array}{c} 3871.68 \pm 0.17 \\ \pi^{+}\pi^{-}J/\psi \\ \omega J/\psi \\ D^{0}\bar{D}^{0}\pi^{0} \\ D^{*0}\bar{D}^{0}\end{array}$	$< 1.2 { m MeV}$	1++	large ρ component off shell
X(3915)	3918.4 ± 1.9 $\omega J/\psi$	20 ± 5	0^{++}	$2^{3}P_{0}$
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$2^{3}P_{2}$
$Z(3900)^+$	$3899.0 \pm 3.6 \pm 4.9$	$46 \pm 10 \pm 20$	1^{+}	$e^+e^-(4260) \to \pi^+\pi^- J/\psi$
	$\pi^+ J/\psi$	$\left(\frac{Z_c(3885) \to D\bar{D}^*}{Z_c \to \pi J/\psi}\right) = 6.2 \pm 1.1 \pm 2.7$	1^{+}	
$Z(3900)^{0}$	$3894.8 \pm 2.3 \pm 2.7$	$29.2 \pm 3.3 \pm 11$	1^{+}	
	$\pi^0 J/\psi$			I = 1
X(3940)	$\begin{array}{c} 3942\pm7/6\pm6\\ \omega J/\psi \end{array}$	$37 \pm 26/15 \pm 8$?	
$Z(4020)^{+}$	$4022.9 \pm 0.8 \pm 2.7$	$7.9 \pm 2.7 \pm 2.6$	1^{+}	$e^+e^-(4260) \to \pi^+\pi^-h_c$
× ,	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$	1^{+}	$e^+e^-(4260) \to \pi^\pm (D^*\bar{D}^*)^\mp$
$Z(4020)^{0}$	$4023.9 \pm 2.2 \pm 3.8$	fixed to Z^+		I = 1
$\psi(4040)$	4039 ± 1	60 ± 10	1	$3^{3}S_{1}$
	$\eta J/\psi$	$(5.2 \pm 0.5 \pm 0.2 \pm 0.5) \times 10^{-3}$		

Systematics: Ψ(4160), Ψ(4415)

• Many open channels for heavy-light meson pair decays.

 $\psi(4160)$ nearby thresholds

Systematics and Expectations

Ψ(4S)

- $M = 4421 \pm 4 \text{ MeV}$ $\Gamma = 62 \pm 20 \text{ MeV};$
- Open decay channels:
 - Many

Decay Mode	Branching Rate
$D^*\bar{D} + cc$	$\frac{\Gamma(D^*\bar{D})}{\Gamma(D^*\bar{D}^*)} = 0.17 \pm 0.25 \pm 0.03$
$D^*\bar{D}^*$	seen
$D_s^{+*}D_s^-$	seen
$DD_{2}^{*}(\bar{2}460)$	$(10 \pm 4)\%$
$\eta J/\psi$	$<6\pm10^{-3}$

- Would be nice to see more study here.

Systematics: Ψ(4160), Ψ(4415)

• Charmonium-like state transitions for masses above the $\psi(3S)$

State	Mass	Width	J^{PC}	Comments
	Transition Observed	Branching Fraction		
X(4140)	$4148.0 \pm 3.9 \pm 6.3$	$28\pm15\pm19$?	
	$\phi J/\psi$			
X(4160)	$4156 \pm 25/20 \pm 15$	$139 \pm 111/61 \pm 21$?	
$\psi(4160)$	4153 ± 3	103 ± 8	1	$2^{3}D_{1}$
	$\eta J/\psi$			
$Z(4200)^{+}$	$4196 \begin{array}{c} 81 & +17 \\ -29 & -13 \end{array}$	$370 \pm 70 {}^{+70}_{-132}$	1^{+}	
Y(4260)	4250 ± 9	108 ± 12	1	
	$\pi^+\pi^- J/\psi$			
	$\pi^0\pi^0 J/\psi$			
	$K^+ K^- J/\psi$			
	$\gamma X(3872)$			2
X(4350)	$4350.6 \pm 4.6 / 5.1 \pm 0.7$	$13 \pm 18/9 \pm 4$	$2^{++}/0^{++}$	$3^{3}P_{2}$
<i>.</i>	$\phi J/\psi$			
Y(4360)	$4337 \pm 6 \pm 3$	$103 \pm 9 \pm 5$	1	
	$\pi^+\pi^-\psi(2S)$			
	$\eta J/\psi$			
	$\pi^{\pm}(DD^{*})^{+}$			
	$\pi^+\psi(2S)$.2 ~
$\psi(4415)$	4421 ± 4	62 ± 20	1	$4^{3}S_{1}$
$Z(4430)^{+}$	$4475 \pm 7^{+15}_{-25}$	$172 \pm 13 + ^{+37}_{-34}$	1+	
	$\pi^+\psi(2S)$			
TT(1000)	$\pi^+ J/\psi$		4	
Y(4660)	$4652 \pm 10 \pm 8$	$68 \pm 11 \pm 1$	1	
	$\pi^+\pi^-\psi(2S)$			
	$\eta J/\psi$			
	$\pi^{\perp}(DD^{*})^{+}$			

Strange heavy-light meson thresholds

- What about SU(3)?
 - If there was no SU(3) breaking: only SU(3) singlet light hadron states could be produced. So single light hadron production (except the n') would be forbidden.

$$U = \exp\left(i\gamma_{5}\frac{\varphi_{a}\lambda_{a}}{f_{\pi}}\right)$$
$$\varphi_{a}\lambda_{a} = \sqrt{2} \begin{pmatrix} \frac{\eta}{\sqrt{6}} + \frac{\pi^{0}}{\sqrt{2}}, & \pi^{+}, & K^{+} \\ \pi^{-}, & \frac{\eta}{\sqrt{6}} - \frac{\pi^{0}}{\sqrt{2}}, & K^{0} \\ K^{-}, & \bar{K}^{0}, & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$

- BUT: SU(3) breaking is induced by the mass splitting of the (Q q) mesons with q=u,d (degenerate if no isospin breaking) and q = s.
- These splittings are large (~100 MeV) so there is large SU(3) breaking in the threshold dynamics.
- This greatly enhances the final states with $\eta + (Q\overline{Q})$. Yu.A. Simonov and A.I. Veselov [arXiv:0810.0366]
- This leads to large effects in the threshold region.
- Similarly important in \boldsymbol{w} and $\boldsymbol{\varphi}$ production.

Strange heavy-light meson thresholds

- What happens at strange heavy-light meson thresholds ?
 - There should be threshold enhancements for strange heavy-light meson pair production leading to sizable production of single n and \$\overlight\$ light hadrons.

Belle Pakhlova et.al [arXiv:1011.4397]

- No wide P-states -> no sequential transitions with these states
 - $M(D_s^+ D_s^-*) = 4,081 \text{ MeV}, M(D_s^+* D_s^-*) = 4,225 \text{ MeV};$ $M(3^3P_2) = 4,315 \text{ MeV}$
 - Direct transitions?
 - At higher energies the D_s(25) wide states could play a role in sequential transitions.

Systematics: Other States

P. Pakhlov and T. Uglov [arXiv:1408.5295]

Summary

- Above heavy flavor production threshold the usual QCDME fails.
 - The transitions rate are much larger than expected.
 - The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions. Magnetic transitions not suppressed.
 - A new mechanism for hadronic transitions is required.
- A new mechanism, in which the dynamics is factored differently, is purposed.
 - It requires an intermediate state containing two narrow heavy-light mesons nearby and near threshold (v -> zero). This is the factor. Other light hadrons may be present or not.
 - The production of this state from the initial state is calculated using familiar strong dynamics of coupled channels.
 - The evolution of this threshold system into the final quarkonium state and light hadrons requires a new threshold dynamics. This dynamics involves non-relativistic heavy systems and should respect HQS as well as the usual SU(3) and chiral symmetry expectations.
- With BES III and LHCb and soon BELLE 2. I expect even more progress in understanding hadronic transitions in the near future.

Backup Slides

Low-lying thresholds

11300 $B_{s}^{*}B_{s}(1P_{1}), B_{s}^{*}B_{s}(1P_{2})$ 11200 $B_s B_s (1P_1)$, $B_s B_s (1P_2)$ $B(1P_1)B_s^{\,\ast}$, $B^{\,\ast}B_s(1P_1)$, $B(1P_2)B_s^{\,\ast}$, $B^{\,\ast}B_s(1P_2)$ 11100 $B(1P_1)B_s$, $BB_s(1P_1)$, $B(1P_2)B_s$, $BB_s(1P_2)$ $B^*B(1P_1)$, $B^*B(1P_2)$ $BB(1P_1)$, $BB(1P_2)$ 11000 Threshold (GeV) 10900 $B_s^* B_s^*$ 10800 $B_s B_s^*$ $B^* B_s^* B_s B_s$ 10700 B^*B_s , BB_s^* $B^*B^*BB_s$ BB^* 10600 BB10500

Low-lying thresholds

 $D_s(1P_0)D_s(1P_0)$, $D_s^*D_s(1P_1)$, $D_s^*D_s(1P_2)$ 4600 $D^{*}D(1P_{2})$ $D(1P_1)D_s^*$, $D^*D_s(1P_1)$, $D(1P_2)D_s$, $D^*D_s(1P_2)$ $D_sD_s(1P_1)$, $D_sD_s(1P_2)$, $D^*_sD_s(1P_1)$ $D^* D(1P_1), DD(1P_2) = D_s D_s (1P_1), D_s^* D_s (1P_0)$ 4400 $D(1P_1)D_s$, $DD_s(1P_1)$, $DD_s(1P_2)$, $D^*D_s(1P_1)$ $DD_{s}(1P_{1}), D^{*}D_{s}(1P_{0})$ $DD(1P_1)$ $D_{s}D_{s}(1P_{0})$ Threshold (GeV) $D_{s}^{*}D_{s}^{*}$ 4200 $DD_s(1P_0)$ $D^*D_s^*$ $D_s D_s^*$ D^*D^* 4000 D^*D_s , DD_s^* $D_s D_s$ DD^* DD_s 3800 DD3600

Potential model states

Decay Couplings

TABLE II: Statistical recoupling coefficients C, defined by Eq. D19 of Ref. [10], that enter the calculation of charmonium decays to pairs of charmed mesons. Paired entries correspond to $\ell = L - 1$ and $\ell = L + 1$.

State	תֿת	*תֿמ	אַק אַע 5*
$^{1}S_{0}$	-: 0	-: 2	-: 2
$^{3}\mathrm{S}_{1}$	$-: \frac{1}{3}$	$-: \frac{4}{3}$	$-: \frac{7}{3}$
${}^{3}P_{0}$	1:0	0:0	$\frac{1}{3}:\frac{8}{3}$
$^{3}P_{1}$	0:0	$\frac{4}{3}:\frac{2}{3}$	0:2
$^{1}\mathrm{P}_{1}$	0:0	$\frac{2}{3}:\frac{4}{3}$	$\frac{2}{3}:\frac{4}{3}$
$^{3}P_{2}$	$0:\frac{2}{5}$	$0:\frac{6}{5}$	$\frac{4}{3}:\frac{16}{15}$
$^{3}\mathrm{D}_{1}$	$\frac{2}{3}:0$	$\frac{2}{3}:0$	$\frac{4}{15}:\frac{12}{5}$
$^{3}\mathrm{D}_{2}$	0:0	$\frac{6}{5}:\frac{4}{5}$	$\frac{2}{5}:\frac{8}{5}$
$^{1}\mathrm{D}_{2}$	0:0	$\frac{4}{5}:\frac{6}{5}$	$\frac{4}{5}:\frac{6}{5}$
$^{3}\mathrm{D}_{3}$	$0:\frac{3}{7}$	$0:\frac{8}{7}$	$\frac{8}{5}:\frac{29}{35}$
${}^{3}\mathrm{F}_{2}$	$\frac{3}{5}:0$	$\frac{4}{5}$: 0	$\frac{11}{35}:\frac{16}{7}$
${}^{3}\mathrm{F}_{3}$	0:0	$\frac{8}{7}:\frac{6}{7}$	$\frac{4}{7}:\frac{10}{7}$
$^{1}\mathrm{F}_{3}$	0:0	$\frac{6}{7}:\frac{8}{7}$	$\frac{6}{7}:\frac{8}{7}$
${}^{3}\mathrm{F}_{4}$	$0:\frac{4}{9}$	$0:\frac{10}{9}$	$\frac{12}{7}:\frac{46}{63}$
${}^{3}G_{3}$	$\frac{4}{7}:0$	$\frac{6}{7}$: 0	$\frac{22}{63}:\frac{20}{9}$
${}^{3}\mathrm{G}_{4}$	0:0	$\frac{10}{9}:\frac{8}{9}$	$\frac{2}{3}:\frac{4}{3}$
$^{1}\mathrm{G}_{4}$	0:0	$\frac{8}{9}:\frac{10}{9}$	$\frac{8}{9}:\frac{10}{9}$
${}^{3}\mathrm{G}_{5}$	$0:\frac{5}{11}$	$0:\frac{12}{11}$	$\frac{16}{9}:\frac{67}{99}$

Structure in two pion transitions

• For example, the Y(5S) has a B(1/2⁻) + B_P(1/2⁺) component. The B_P(1/2⁺) state decays rapidly into a B meson and pion, leaving a B(1/2⁻) + B(1/2⁻) nearly at rest. They then recombine into the final (Y or h_b) and pion. π

- Both the Y(5S) -> Bp(0+) B* and Bp(0+) -> π B decays are S-wave
- The analogy in the charmonium system is the structure seen in the $\psi(4160) \xrightarrow{y} \pi^{n} \pi^{h} J/\psi$ transition.
- This provides a dynamical mechanism for the Meson Loop and ISPE models.

