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Multiple Sources of Triangular Flow and Notation:

Quantify the initial e-dense w. triangularity:

〈.〉ev denotes ave over the entropy dist. in a single event

ε3,3 = −
〈
r3ei3φ

〉
ev

R3
rms

And find to a first approximation:

v3(pT , η) ∝ ε3,3

But:

1. The fluctuating geometry in radius and rapidity can not be fully characterized by ε3

2. This sub-geometry controls the details of the pT , η dependence of v3(pT , η)

Want to find additional measurements to understand and quantify

the fluctuating geometry!



The Flow Covariance Matrix and Notation

• For each event expand the particle distribution in a fourier series

dN

dp dϕp
= V0(p) +

∞∑

n=1

Vn(p)einϕp + h.c. ,

so Vn(p) is a sum of particles, not normalized. (p labels either pT or η)

• The sample estimate for the complex Vn(pT ) is a sum of all particles

Vn(p) =
1

∆p

M(p)∑

j=1

einϕj

• The statistics of the flow is given by the covariance matrix:

C(p1, p2) = 〈Vn(p1)V
∗
n (p2)〉

Our goal is to characterize this matrix!



Characterizing the covariance matrix with r(p1, p2) and factorization breaking

r3(p1, p2) =
〈V3(p1)V ∗3 (p2)〉√
〈|V3(p1)|2〉 〈|V3(p2)|2〉

< 1

If there is are multiple stat. independent harmonic flows in an event (F. Gardim et al, arxiv:1211.0989)

r(p1, p2) < 1
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Principal Component Analysis – Warm up

• First assume there is one source of flow in the event∝ ε3:

V3(p) = ξ︸︷︷︸
complex

× V
(1)
3 (p)︸ ︷︷ ︸

fixed real func of p V2{2}(p)

where ξ ∝ ε3

ξ =
ε3√
〈|ε3|2〉

= a random complex number with
〈
|ξ|2
〉

= 1

• Then the covariance matrix factorizes

〈V3(p1)V ∗3 (p2)〉 = V
(1)
3 (p1)V

(1)
3 (p2)

and

r(p1, p2) =
〈V3(p1)V ∗3 (p2)〉√
〈|V3(p1)|2〉 〈|V3(p2)|2〉

= 1



Principal Component Analysis

• In general, the covariance matrix can be written as a sum of eigenvectors

〈V3(p1)V ∗3 (p2)〉 =
∑

a

V
(a)
3 (p1)V

(a)
3 (p2)

where

V
(a)
3 (p) =

√
λa︸︷︷︸

flow magnitude

× ψ(a)(p)︸ ︷︷ ︸
normalized flow e-vector

• The event-by-event flow is expanded in terms of eigenvectors:

V3(p) = ξ1V
(1)
3 (p) + ξ2V

(2)
3 (p) + . . .

The eigenvectors are the statistically independent flows in the event!



PCA Continued

• So:

V3(p) = ξ1︸︷︷︸
Random-complex with unit variance

× V
(1)
3 (p)︸ ︷︷ ︸

leading flow

+ ξ2︸︷︷︸
phase records the flow angle

× V
(2)
3 (p)︸ ︷︷ ︸

subleading flow

+ . . .

• The flows are uncorrelated

〈ξaξ∗b 〉 = δab

• Thus

〈V3(p)V ∗3 (p)〉 =
∑

a

V
(a)
3 (p1)V

(a)
3 (p2)

Usually only a few∼ 2 eigenvectors are needed to characterize the covariance matrix

The eigenvectors usually have a physical interpretation.



The covariance matrix in hydro and its eigen-decomposition:

• Only two eigenvectors with λ2 � λ1:

r(p1, p2) ' 1− 1

2

(
V
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Two (or three) evectors summarize the covariance matrix up to pT = 2 (or 3) GeV



Chun Shen, Zhi Qiu, Heinz, arxiv:1502.0463

8

FIG. 8: (Color online) Flow factorization ratio rn(ptrig
T , passo

T ) (n = 2, 3, 4) from model calculations with MC-Glauber (a-d) and
MC-KLN (e-h) initial conditions, ultra-central 2.76 A TeV Pb + Pb collisions at 0-0.2% centrality. Three values of ⌘/s were
explored in each case, as indicated. Theoretical results are compared with measurements by the CMS collaboration [21].

FIG. 9: (Color online) Similar to Fig. 8, but for n = 3.

FIG. 10: (Color online) Similar to Fig. 8, but for n = 4.

Completely summarized by two eigenvectors!



The eigenvectors in central collisions:

v(a)n (pT ) ≡ V (a)
n (pT )/ 〈dN/dpT 〉
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• The leading eigenvector v
(1)
3 (pT ) is essentially v3{2}(pT )

• The sub-leading flow describes the stat.-independent flucts around v3{2}(pT )



Recap and next steps

S(r, φ) = entropy distribution in transverse plane

This fluctuating initial entropy density drives two principal flows



Correlation between the subleading harmonic flow and the geometry

• The initial entropy density ≡ S(r, φ) in the transverse plane is written:

S(r, φ) ≡ S0(r) +
∞∑

n=1

Sn(r)einφ where S3(r)︸ ︷︷ ︸
complex

≡
∫
dφ

2π
e−i3φS(r, φ)

• The event-by-event flow is described by amplitudes and phases of flow vectors

V3(p) = ξ1 V
(1)
3 (p) + ξ2 V

(2)
3 (p) + . . .

ξa = |ξ|ei3φa records the amplitude and angular orientation of a-th flow

• Calculate the correlation between the flow and the geometry

S3(r; ξ) = 〈S3(r) ξ∗a〉

or the average entropy rotated into event plane of the a-th flow

S(r, φ; ξa) = 〈|ξ|S(r, φ+ φa)〉



Correlation between the flow and the geometry:

r3 ×
[
S(r, φ; ξa)− 〈|ξ|S(r, φ)〉

]
︸ ︷︷ ︸

∼15% triangular perturbation of average
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• For the leading flow, the integral of plot is∝ ε3
The subleading flow is strongly correlated with an excitation of the triangular geometry



Finding a geometrical predictor of the subleading flow

• Consider ε3,3 and the leading flow to set notation 〈.〉ev is ave. over entropy dist. in the event

ε3 ∝
〈
ei3φ r3︸︷︷︸

weight ρ(r)

〉
ev

choosing ρ(r) ∝ r3 correlates well with the leading triangular flow

• Consider choosing a weight ρ(r) for selecting the subleading flow

ξ2V
(2) ∝ ε(2)3 where ε

(2)
3 ≡

〈
ei3φ ρ(r)

〉
ev

• Expand ρ(r) with a fourier transform, or fit with a discrete set of fourier modes:

ρ(r) =
∑

i

ciJ3(kir)



Best fit:

flow ∝ 〈ei3φρ(r)〉ev
Quantify the correlation coefficient, Q, between the flow and the geometric predictor

Q =





1 means perfectly correlated

0 uncorrelated
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Best fit in central collisions:

ξ2V
(2)
3 ∝ ε(2)3 where ε

(2)
3 ≡

〈
ei3φ ρ(r)︸︷︷︸

fit func

〉
ev
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Correlation between the flow ξa and its geometrical predictor ξpreda :

leading subleading
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Summary

1. PCA is an efficient and systematic way to describe the flow correlations in the data

2. The different principal components often have a clear physical meaning

(a) Radial excitations of the geometry are responsible for factorization breaking

(b) But in peripheral collisions the correlation is not as strong? Non-linear mixing?

3. Other directions to pursue:

(a) Rapidity fluctuations

(b) Rare probes (J/ψ, γ, D) and radial flow



Rapidity Correlations with AMPT (Z.W. Lin et al, nucl-th/0411110)

r(η1, η2) =
〈Vn(η1)V

∗
n (η2)〉√

〈|Vn(η1)|2〉 〈|Vn(η2)|2〉
< 1

Can study rapidity fluctuations in much the way measuring torqued fireballs

(P. Bozek et al, arXiv:1011.3354)



3

the AMPT model [19]. Initial conditions are generated
via the HIJING 2.0 model [26] which contains nontrivial
event-by-event fluctuations at the nucleonic and partonic
levels [27]. In AMPT, collective flow is generated mainly
as a result of partonic cascade. AMPT also has reso-
nance formations and decays, and thus contains non-flow
effects. We have checked that the present implementa-
tion reproduces LHC data for anisotropic flow (v2 to v6)
at all centralities [28].

We first construct the pair distribution, Eq. (6), for all
particles in the −3 < η < 3 pseudorapidity window, in η
bins of 0.5. We then diagonalize the 12×12 matrix corre-
sponding to these pseudorapidity bins. The eigenvalues
are in general strongly ordered from largest to smallest.
There are a few negative eigenvalues which can be at-
tributed to statistical fluctuations.5
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5 This can be checked by applying the PCA to purely statisti-
cal fluctuations. We generated random matrices according to
the statistical error of Vn∆(p1, p2), and found that the nega-
tive eigenvalues of Vn∆(p1, p2) are compatible with the negative
eigenvalues of these random matrices.

FIG. 1. Principal component analysis as a function of pseu-
dorapidity for Pb+Pb collisions at

√
s = 2.76 TeV in the 0-

10% centrality window generated with AMPT. (a) Multiplic-
ity fluctuations; (b) Elliptic flow fluctuations; (c) Triangular
flow fluctuations.

The leading principal components for n = 0, n = 2,
and n = 3 are shown in Fig. 1. Fig. 1 (a) displays the
principal modes of multiplicity fluctuations (n = 0) as

a function of pseudorapidity. The leading mode v
(1)
0 (η)

is a global 12% relative fluctuation, independent of η,
corresponding to the fluctuation of the total multiplic-
ity within the event sample. The next-to-leading mode

v
(2)
0 (η) is odd and of much smaller amplitude, as shown

by the eigenvalues, λ(2) ∼ λ(1)/60. A natural source of
this odd mode is the small difference between the partic-
ipant numbers of projectile and target nuclei induced by
fluctuations, which creates a forward-backward asymme-
try of the multiplicity [29, 30]. Since both the colliding
system and the analysis window are symmetric around
η = 0, principal components have definite parity in η, up

to statistical fluctuations. Indeed, the next mode v
(3)
0 (η)

is even, suggesting that principal components typically
have alternating parities. The corresponding eigenvalue

is again much smaller, λ(3) ∼ λ(2)/5. v
(4)
0 (η) and higher

modes are blurred by statistical fluctuations. Note that
Eq. (7) defines principal components up to a sign. Here,

we conventionally choose v
(α)
n (η) > 0 at forward rapid-

ity. Fig. 1 also illustrates the orthogonality of principal
components, that is,

∑

η

V (α)
n (η)V (β)∗

n (η) = 0 if α ̸= β. (11)

Thus, v
(α)
n (η) typically has α− 1 nodes.

Fig. 1 (b) and (c) display the principal components of
elliptic and triangular flow fluctuations as a function of

pseudorapidity. The leading modes v
(1)
n (η) correspond

to the usual elliptic and triangular flows, which depend
weakly on η at the LHC [31, 32]. The subleading modes

v
(2)
n (η) are odd and of smaller amplitude (λ(2) ≃ λ(1)/13).

These rapidity-odd harmonic flows, or torqued flows, can
be attributed to the small relative angle between n-th
harmonic participant planes defined in the projectile and
target nuclei [33].

Note that the correlation matrix Vn∆(η1, η2) is the sum
of flow and nonflow correlations [34]. The nonflow corre-
lation is significant only for small values of the relative
pseudorapidity ∆η ≡ |η1 − η2|. If the range in ∆η is
smaller than the binning, it contributes to the diagonal
elements, and its effect is to shift all eigenvalues by a con-
stant. We observe in general a clear ordering of eigenval-
ues (λ(2)/λ(3) ∼ λ(3)/λ(4) ∼ 2) which suggests that the
correlation has a long range in ∆η and is therefore dom-
inated by flow. Visual inspection of correlation matrix
Vn∆(η1, η2) qualitatively confirms this reasoning.

We then carry out the analysis as a function of trans-
verse momentum. In addition to AMPT generated



Summary

1. PCA is an efficient and systematic way to describe the flow correlations in the data

2. The different principal components often have a clear physical meaning

(a) Radial excitations of the geometry are responsible for factorization breaking

(b) But in peripheral collisions the correlation is not as strong? Non-linear mixing?

3. Other directions to pursue:

(a) Rapidity fluctuations

(b) Rare probes and radial flow

Thank you!



Radial Flow:

V0(p) = ξ1V
(1)
0 (p) + ξ2V

(2)
0 (p) + . . .
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Two eigenmodes:

1. The leading eigenmode is from global multiplicity (impact param) fluctuations.

2. The subleading eigenmode is a dynamical response to geometry like elliptic flow



Radial flow of rare probes:

V0(p) = ξ1V
(1)
0 (p) + ξ2V

(2)
0 (p)︸ ︷︷ ︸

e-by-e radial flow of bulk

+ . . .
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Does J/ follow?

• We want to know if the rare probes, J/ψ, D, γ, “follow the flow”. So measure

vD0 (pT ) =
〈ξ2 dND/dpT 〉
〈dND/dpT 〉

– This equivalent to finding the eigenvectors of the combined probe+bulk system

This measurement has better statistics than v2, and is a good a measure of collectivity!


