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Multiple Sources of Triangular Flow and Notation:

6

9 Quantify the initial e-dense w. triangularity:

4 (.) oy denotes ave over the entropy dist. in a single event
3 <r3 ei3¢>
€33 = ——p53
2 Rins
1 And find to a first approximation:
0
64202 46 v3(pr,n) X €33

X (fm)

But:
1. The fluctuating geometry in radius and rapidity can not be fully characterized by €3
2. This sub-geometry controls the details of the pr, 1 dependence of v3 (pT, 77)

Want to find additional measurements to understand and quantify

the fluctuating geometry!



The Flow Covariance Matrix and Notation

e For each event expand the particle distribution in a fourier series

W Vo(p) + i Vi (p)e™® + h.c
- n . ° 9
dp dgpp n=1
so V},(p) is a sum of particles, not normalized. (p labels either pr or n)

e The sample estimate for the complex V,, (pr) is a sum of all particles

1 M (p) |
Valp) = 35 > "
j=1

e The statistics of the flow is given by the covariance matrix:

C(p1,p2) = (Va(p1)V,; (p2))

Our goal is to characterize this matrix!



Characterizing the covariance matrix with r(pl : pg) and factorization breaking

ra(p1. pa) = (V3(p1) V5 (p2))
V(IVa(p1)[?) (IVs(p2)[?)
If there is are multiple stat. independent harmonic flows in an event (F. Gardim et al, anxiv:1211.0989)
r(p1,p2) <1
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Principal Component Analysis — Warm up

e First assume there is one source of flow in the event o< €3:

p) = & V3 (p)

complex fixed real func of p Vo{2}(p)

where £ < €3

§ = 3 — a random complex number with <]§\2> =1

vV (lesl?)

® Then the covariance matrix factorizes

(Va(p1) V5 (p2)) = Vo (p1) Vs (p2)

and




Principal Component Analysis

e In general, the covariance matrix can be written as a sum of eigenvectors

(Va(p1) V5 (p2)) Z Va® (p1)Va® (p2)
where
0 = Ve x ¥ (p)
—— N——
flow magnitude normalized flow e-vector

e The event-by-event flow is expanded in terms of eigenvectors:

Va(p) = &1Va (p) + &Vi2) (p) +

The eigenvectors are the statistically independent flows in the event!



PCA Continued

e SO
3(p) = &1 x V3 (p)
"~ N—_——
Random-complex with unit variance  |eading flow
2
+ &2 x Vi) o+
—~— N—_——

phase records the flow angle  subleading flow

e The flows are uncorrelated
<€a€g> — 5ab
e Thus
(Vs(p Z VA (p1) VA (ps)
Usually only a few ~ 2 eigenvectors are needed to characterize the covariance matrix

The eigenvectors usually have a physical interpretation.



The covariance matrix in hydro and its eigen-decomposition:

e Only two eigenvectors with Ao << \1:
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Two (or three) evectors summarize the covariance matrix up to pr = 2 (or 3) GeV



Chun Shen, Zhi Qiu, Heinz, arxiv:1502.0463
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Completely summarized by two eigenvectors!
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The eigenvectors in central collisions:

g (pr) = Vi (pr)/ (AN /dpr)
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e The leading eigenvector v§1> (pr) is essentially v3{2}(pr)

e The sub-leading flow describes the stat.-independent flucts around v3{2}(p7)



Recap and next steps

S(r, ¢) = entropy distribution in transverse plane

SO = DD W B~ O O
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This fluctuating initial entropy density drives two principal flows



Correlation between the subleading harmonic flow and the geometry

e The initial entropy density = S(r, gb) in the transverse plane is written:

— - mao wher — @ —13¢
5(0,0) = Solr) + D Su(r)e" where $50), = [ 51 5(0,0)

complex

e The event-by-event flow is described by amplitudes and phases of flow vectors

Va(p) = & Vg(l)(p) + &9 V3(2) (p) + ...

Eq = |§ ]ei?’% records the amplitude and angular orientation of a-th flow

e Calculate the correlation between the flow and the geometry

S3(r; &) = (S5(r) &)

or the average entropy rotated into event plane of the a-th flow

S(r,¢;€a) = (|| S(r, ¢ + ¢a))



Correlation between the flow and the geometry:

r3x [S(r ¢5€) — (€1S(r, ¢)) ]
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e For the leading flow, the integral of plot is o< €3

The subleading flow is strongly correlated with an excitation of the triangular geometry



Finding a geometrical predictor of the subleading flow

e Consider 6373 and the Ieading flow to set notation {.)ev Is ave. over entropy dist. in the event
130 3
weight p(r)
3

choosing p(r) o r° correlates well with the leading triangular flow

e Consider choosing a weight p(r) for selecting the subleading flow

§2V(2) X 6:(32) where eé2) = <ei3¢ p(r)>

ev

e Expand p(r) with a fourier transform, or fit with a discrete set of fourier modes:

p(r) =Y ciJs(kir)

1



Best fit:

flow o< (€% (7)) ey

Quantify the correlation coefficient, (), between the flow and the geometric predictor

|Qal

1.00
0.99 |

0.98

0.97 ¢
0.96 |
0.95 |

0.94
0.93
0.92
0.91

0.90 ¢t

1 means perfectly correlated

1.0
0.9
0.8
0.7
0.6

S 05

04
0.3

0.2 -

0.1
0.0

.
O uncorrelated
\
| | | | I'eadiné :
P
- Q. ]
3 K~] ]
@ :
3 X, .
@
:' x:
E 5 k-modes e —f
t 2k-modes O ]
; €3,35 €3,5 X
0 10 20 30 40 50 60 70

centrality (%)

centrality (%)

| | | subleadin

X @., i

! X x ®.9 |

i X x o

X % X ®

B % i

B X i

X x

L 5 k-modes - U i

2 k-modes O ]

i €3,3y €35 X |

Vg =——t—

o—=0T"—0T¢—¢T¢ = SISl

0 10 20 30 40 50 60 70



Best fit in central collisions:
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Correlation between the flow &, and its geometrical predictor €279
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Summary

1. PCA is an efficient and systematic way to describe the flow correlations in the data

2. The different principal components often have a clear physical meaning
(a) Radial excitations of the geometry are responsible for factorization breaking

(b) But in peripheral collisions the correlation is not as strong? Non-linear mixing?
3. Other directions to pursue:

(a) Rapidity fluctuations

(o) Rare probes (J /1, v, D) and radial flow



Rapidity Correlations with AMPT (ZW. Lin et al, nucl-th/0411110)

Va(m) Vi (n2))
(Ve () 2) ([Va(n2)[*)

Can study rapidity fluctuations in much the way measuring torqued fireballs

r(n1,m2) = 7

(P. Bozek et al, arXiv:1011.3354)
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Summary

1. PCA is an efficient and systematic way to describe the flow correlations in the data

2. The different principal components often have a clear physical meaning
(a) Radial excitations of the geometry are responsible for factorization breaking

(b) But in peripheral collisions the correlation is not as strong? Non-linear mixing?

3. Other directions to pursue:
(a) Rapidity fluctuations

(b) Rare probes and radial flow

Thank you!



Radial Flow:

Vo(p) = &V () + VP () + ...

Subleading mode
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Two eigenmodes:

Correlation with geometry
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1. The leading eigenmode is from global multiplicity (impact param) fluctuations.

2. The subleading eigenmode is a dynamical response to geometry like elliptic flow



Radial flow of rare probes:

Vop) =&V )+ &% )+

~

e-by-e radial flow of bulk

T T T T T 015
| subleading _
0.1

Does J/1 follow? | 114 005

|

|

o
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e We want to know if the rare probes, J/v, D, -y, “follow the flow”. So measure

~ (& dNp/dpr)
vy (pr) = [N Ddpr)

— This equivalent to finding the eigenvectors of the combined probe+bulk system

This measurement has better statistics than v9, and is a good a measure of collectivity!



