The Spin Asymmetries of the Nucleon Experiment - SANE

Oscar A. Rondón
INPP - University of Virginia

6th Workshop of the APS Topical Group on Hadronic Physics Baltimore, April 10, 2015

Probing the Nucleon with Polarized Electromagnetic Scattering

Inelastic e-nucleon Scattering

- Inclusive EM scattering is described by hadronic and leptonic tensors
- Symmetries reduce hadronic tensor to four structure functions (SF's):
- Symmetric part: unpolarized $\boldsymbol{W}_{\mathbf{1}}, \boldsymbol{W}_{2}$
- Anti-symmetric part:
spin-dependent $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}$
- Anti-symmetric part:

Target fragments

Current jet (http://www.desy.de/~gbrandt/feyn/)

$$
\begin{aligned}
W_{\mu v}^{A}= & 2 \epsilon_{\mu v \lambda \sigma} q^{\lambda} \\
& \left\{M^{2} S^{\sigma} \boldsymbol{G}_{1}\left(v, Q^{2}\right)+\left[M v S^{\sigma}-p^{\sigma} S \cdot q\right] \boldsymbol{G}_{\mathbf{2}}\left(v, Q^{2}\right)\right\}
\end{aligned}
$$

Inclusive scattering: undetected final state

- $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}, \boldsymbol{W}_{\mathbf{1}}$ and \boldsymbol{W}_{2}, contain all the information on nucleon structure that can be extracted from inclusive data

Structure Functions in Inclusive DIS

- In high energy DIS, $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}, \boldsymbol{W}_{\mathbf{1}}$ and $\boldsymbol{W}_{\mathbf{2}}$, become scaling functions of only one variable, up to log violations.

$$
\begin{array}{cl}
\lim _{Q^{2}, v \rightarrow \infty} M W_{1}\left(v, Q^{2}\right)=F_{1}(x) & \lim _{Q^{2}, v \rightarrow \infty} M^{2} v G_{1}\left(v, Q^{2}\right)=g_{1}(x) \\
\lim _{Q^{2}, v \rightarrow \infty} v W_{2}\left(v, Q^{2}\right)=F_{2}(x) & \lim _{Q^{2}, v \rightarrow \infty} M v^{2} G_{2}\left(v, Q^{2}\right)=g_{2}(x) \\
\text { Bjorken } x=Q^{2} /(2 M v) &
\end{array}
$$

- In the quark parton model, \boldsymbol{g}_{1} and \boldsymbol{F}_{1} can be related to parton distribution functions - PDF's:

$$
F_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)+q_{f}^{\downarrow}(x)\right) \quad g_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)-q_{f}^{\downarrow}(x)\right)
$$

(Index f runs over active flavors)

Virtual Compton Asymmetries

- The spin SF's are also related to virtual photon absorption crosssections and spin asymmetries (SA)
- the helicity of the virtual photon-nucleon system is $3 / 2$ or $1 / 2$ for transverse photons, $1 / 2$ for longitudinal ones
- SA \boldsymbol{A}_{1} is defined in terms of the difference for $3 / 2$ and $1 / 2$ helicity cross sections

$$
\begin{aligned}
& A_{1}=\frac{\sigma_{T}^{(3 / 2)}-\sigma_{T}^{(1 / 2)}}{\sigma_{T}^{(3 / 2)}+\sigma_{T}^{1 / 2)}} \\
& A_{1}=\frac{1}{F_{1}}\left(g_{1}-\gamma^{2} g_{2}\right) ; \quad \gamma=\frac{2 x M}{\sqrt{Q^{2}}}
\end{aligned}
$$

- \boldsymbol{A}_{2} represents the interference between initial transverse and final longitudinal amplitudes

$$
\begin{aligned}
& \boldsymbol{A}_{2}=\frac{\sigma_{T L}^{(1 / 2)}}{\sigma_{T}^{(3 / 2)}+\sigma_{T}^{(1 / 2)}} \leq \sqrt{\frac{A_{1}+1}{2} R} \leq \boldsymbol{R}=\frac{\sigma_{L}}{\sigma_{T}} \\
& A_{2}=\frac{\gamma}{F_{1}}\left(g_{1}+g_{2}\right)=\frac{\gamma}{F_{1}} \boldsymbol{g}_{T}
\end{aligned}
$$

Model Independent Extraction of Spin Structure Functions

- $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ can be separated by measuring cross section differences for opposite beam helicities with target spins parallel and transverse to the beam

$$
\begin{array}{r}
\Delta \sigma\left(\theta, \theta_{N}, \phi\right)=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E}\left[\left(E \cos \theta_{N}+E^{\prime} \cos \alpha\right) M \boldsymbol{G}_{1}+2 E E^{\prime}\left(\cos \alpha-\cos \theta_{N}\right) \boldsymbol{G}_{2}\right] \\
\\
\cos \alpha=\sin \theta_{N} \sin \theta \cos \phi+\cos \theta_{N} \cos \theta, \quad(\theta, \phi: \text { final lepton angles })
\end{array}
$$

- transverse target spin θ_{N} : comparable $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}$ terms

$$
\frac{d^{2} \sigma^{(\uparrow \rightarrow)}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{(\downarrow \rightarrow)}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E} E^{\prime} \sin \theta \cos \phi\left[M \boldsymbol{G}_{1}\left(\nu, \boldsymbol{Q}^{2}\right)+2 E \boldsymbol{G}_{2}\left(\nu, \boldsymbol{Q}^{2}\right)\right]
$$

- G_{1} is twist-2 (plus corrections)

4/10/15 $-\boldsymbol{G}_{2}$ has both twist-2 and twist-3 contributions

Transverse Polarized Scattering: Unlocking Twist-3

- Twist-2 and twist-3 operators contribute at same order in transverse polarized scattering
- twist-2: handbag diagram
- twist-3: $q g q$ correlations
- direct access to twist-3 via \boldsymbol{g}_{2} :
- interacting $q g q$ is first step to understanding confinement
- "Unique feature of spin-dependent scattering" (R. Jaffe)

Why is \boldsymbol{g}_{2} interesting?

- tests twist-3 effects = quark-gluon correlations
- higher twist corrections to \boldsymbol{g}_{1} with $3^{\text {rd }}$ moment's \boldsymbol{d}_{2} matrix element
- also test lattice $\mathrm{QCD}, \mathrm{QCD}$ sum rules, quark models
- \boldsymbol{d}_{2} related to color Lorentz force on transverse polarized quark (M. Burkardt, AIP Conf. Proc. 1155 (2009) 26)
- sign of \boldsymbol{d}_{2} related to sign of transverse deformation (anomalous κ^{q})
- polarizabilities of color fields (with twist-4 matrix element f_{2})
- magnetic $\chi_{\mathrm{B}}=\left(4 \boldsymbol{d}_{2}+f_{2}\right) / 3$ and electric $\chi_{\mathrm{E}}=\left(4 \boldsymbol{d}_{2}-2 f_{2}\right) / 3$.
- contains chiral odd twist-2 $=$ quark transverse spin (mass term)

4/10/15 - test quark masses (covariant parton models)

$\boldsymbol{g}_{\mathbf{2}}$ and $\boldsymbol{g}_{\mathrm{T}}$ Spin Structure Functions

Experimentally measured quantities

$$
g_{T}(x)=g_{1}(x)+g_{2}(x)=\frac{1}{2} \sum e_{q}^{2} g_{T}^{q}(x)
$$

g_{T}^{q} in terms of Transverse Momentum Dependent distributions ${ }_{[1]}$

$$
\begin{array}{r}
g_{T}(x)=\int d^{2} \vec{k}_{t} \frac{\vec{k}_{t}^{2}}{2 M^{2}} \frac{g_{1 \mathrm{~T}}^{q}\left(x, \vec{k}_{t}^{2}\right)}{x}+\frac{m}{M} \frac{h_{1}(x)}{x}+\tilde{g}_{T}(x) \\
\text { twist-3 TMD quark mass term qgq interaction }
\end{array}
$$

Applying twist-2 Wandzura-Wilczek approximation of g_{2}

$$
g_{2}^{w W}(x)=-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)
$$

Twist-3 for the nucleon (neglecting quark mass)

$$
\bar{g}_{2}=\frac{1}{2} \sum e_{q}^{2}\left[\tilde{g}_{T}^{q}-\int_{x}^{1} \frac{d y}{y}\left(\tilde{g}_{T}^{q}(y)-\hat{g}_{T}^{q}(y)\right)\right] ; \quad \tilde{g}_{T}=q g \text { term, } \hat{\mathrm{g}}_{T}=\text { Lorentz invariance }[2]
$$

Proton world $\mathrm{A}_{\| \mid}, \mathrm{A}_{\perp}$ data before SANE

- Two beam energies: 5.9 GeV , 4.7 GeV
- Very good high \boldsymbol{x} coverage with detector at 40°

Experiment

Spin Asymmetries of the Nucleon Experiment (TJNAF E07-003)

SANE Collaboration
Argonne National Lab., Christopher Newport U., Florida International U., Hampton U., Jefferson Lab., U. of New Hampshire, Norfolk S. U., North Carolina A\&T S. U., Mississippi S. U., Ohio U., IHEP - Protvino, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., Southern U. New Orleans,

Temple U., Tohoku U., U. of Virginia, Yerevan Physics I., Xavier U.
Spokespersons:
S. Choi (Seoul), M. Jones (JLab), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Goal: Measure the proton spin structure function $\boldsymbol{g}_{\mathbf{2}}\left(x, Q^{2}\right)$ and spin asymmetry $\mathbf{A}_{1}\left(x, Q^{2}\right)$ for $2.5 \leq \boldsymbol{Q}^{2} \leq 6.5 \mathrm{GeV}^{2}$ and $0.3 \leq \boldsymbol{x} \leq 0.8$

Method: Measure parallel and near-transverse inclusive double spin asymmetries, detecting the electrons with novel non-magnetic large solid angle telescope BETA

SANE Layout in JLab's Hall C

[1] Big Electron Telescope Array $\Delta \Omega \sim 190 \mathrm{msr} ; \Delta \theta= \pm 10^{\circ}$

BETA with DIS electron simulation

[^0][4] Norfolk State U. and U. of Regina
[5] UVA- JLab

Polarized Target

Data

DATA

Detector	Detected particle	Scatifering Type	Beam Energy [GeV]	Field Direction	Target
BETA	e, π^{0}	Inclusive inelastic	5.9, 4.7	$180^{\circ}, 80^{\circ}$	NH3
HMS	e	Inclusive inelastic	5.9, 4.7	$180^{\circ}, 80^{\circ}$	NH3 C, $\mathrm{LHe}^{[1]}$
		Inclusive elastic	5.9	80°	NH3
BETA - HMS	$e-p$	Coincidence elastic	5.9	80°	NH3

- Data taken in January - March 2009

BETA and HMS data

- $Q^{2}-x$ phase space of BETA's 80° data

- Central kinematics of HMS inclusive asymmetry data
- cut on $\mathrm{E}^{\prime} \geq 1.3 \mathrm{GeV}$

Measured Asymmetries $\mathrm{A}\left(80^{\circ}\right), \mathrm{A}\left(180^{\circ}\right)$

$$
\begin{gathered}
A_{m}=\frac{\epsilon}{f P_{b} P_{t} C_{N}} ; \epsilon=\frac{N^{-}-N^{+}}{N^{-}+N^{+}} \\
A_{p h y s}=\frac{1}{f_{r c}}\left(\frac{A_{m}-f_{b} A_{b}}{1-f_{b}}\right)+A_{r c}
\end{gathered}
$$

- $\boldsymbol{N}^{+,-}=$charge normalized, dead time corrected yields

- $\boldsymbol{P}_{\mathbf{b}^{\prime}} \boldsymbol{P}_{\mathrm{t}}=$ beam, target polarizations
- $\boldsymbol{f}=$ polarized dilution factor
- $\boldsymbol{C}_{\mathrm{N}}={ }^{14} \mathrm{~N}$ polarization correction
- $\boldsymbol{A}_{b}, f_{b}=$ background corrections

${ }_{4 / 10 / 15} \boldsymbol{A}_{r c} \boldsymbol{f}_{r c}=$ radiative corrections

Preliminary Results

Spin Asymmetries $\boldsymbol{A}_{\mathbf{1}}$ and $\boldsymbol{A}_{\mathbf{2}}$

- HMS single arm data in the resonances, $\left\langle Q^{2}\right\rangle \sim 1.8 \mathrm{GeV}^{2}$

$$
A_{1}=\frac{1}{D^{\prime}}\left(\frac{E-E^{\prime} \cos \theta}{E+E^{\prime}} A_{180}+\frac{E^{\prime} \sin \theta}{\left(E+E^{\prime}\right) \cos \phi} \frac{A_{180} \cos 80^{\circ}+A_{80}}{\sin 80^{\circ}}\right)
$$

- Model independent separation from

$$
A_{2}=\frac{1}{D^{\prime}} \frac{1}{2 E}\left(\sqrt{Q^{2}} A_{180}-\sqrt{Q^{2}} \frac{E-E^{\prime} \cos \theta}{E^{\prime} \sin \theta \cos \phi} \frac{A_{180} \cos 80^{\circ}+A_{80}}{\sin 80^{\circ}}\right)
$$ measured asymmetries

Spin Asymmetries $\boldsymbol{A}_{\mathbf{1}}$ and $\boldsymbol{A}_{\mathbf{2}}$

- HMS single arm data in the resonances, $\left\langle Q^{2}\right\rangle \sim \underline{1.3} \mathrm{GeV}^{2}$

$$
A_{1}=\frac{1}{D^{\prime}}\left(\frac{E-E^{\prime} \cos \theta}{E+E^{\prime}} A_{180}+\frac{E^{\prime} \sin \theta}{\left(E+E^{\prime}\right) \cos \phi} \frac{A_{180} \cos 80^{\circ}+A_{80}}{\sin 80^{\circ}}\right)
$$

- Model independent separation from

$$
A_{2}=\frac{1}{D^{\prime}} \frac{1}{2 E}\left(\sqrt{Q^{2}} A_{180}-\sqrt{Q^{2}} \frac{E-E^{\prime} \cos \theta}{E^{\prime} \sin \theta \cos \phi} \frac{A_{180} \cos 80^{\circ}+A_{80}}{\sin 80^{\circ}}\right)
$$ measured asymmetries

(H-y. Kang)

DIS Spin Asymmetry \boldsymbol{A}

- $\boldsymbol{A}_{1}(W)$ shows clear decreasing trend
- SANE BETA data
- statistical errors only
- SLAC data plotted for individual spectrometers
- very broad Q^{2} range
- CLAS data at same W but different Q^{2} merged for
 clarity

\boldsymbol{g}_{1} and $\boldsymbol{g}_{\mathbf{2}}$ in DIS and Resonances

- BETA proton data
- DIS and Resonances
- $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}{ }^{\mathrm{wW}}$ curves from PDF's at $4 \mathrm{GeV}^{2}$
- $E^{\prime} \geq 0.6 \mathrm{GeV}$
- more data at $1.6 \mathrm{GeV}^{2}$ coming
- SLAC E143, E155, E155x, SMC and HERMES DIS

\boldsymbol{g}_{1} and $\boldsymbol{g}_{\mathbf{2}}$ in DIS and Resonances

- BETA proton data
- DIS and Resonances
- $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}{ }^{\mathrm{wW}}$ curves from PDF's at $4 \mathrm{GeV}^{2}$
- $E^{\prime} \geq 0.6 \mathrm{GeV}$
- more data at $1.6 \mathrm{GeV}^{2}$ coming
- SLAC E143, E155, E155x, SMC and HERMES DIS

Operator Product Expansion for Spin SF's

- OPE relates Cornwall-Norton moments to matrix elements of twist-2 $\boldsymbol{a}_{\mathrm{N}}$ and twist- $3 \boldsymbol{d}_{\mathrm{N}}$ $\int_{0}^{1} x^{N} g_{1}\left(x, Q^{2}\right) d x=\frac{\boldsymbol{a}_{N}}{2}+t m c, \quad N=0,2,4, .$.
$\int_{0}^{1} x^{N} g_{2}\left(x, Q^{2}\right) d x=\frac{N\left(\boldsymbol{d}_{N}-\boldsymbol{a}_{N}\right)}{2(N+1)}+t m c, N=2,4, .$.
(tme :target mass corrections)
- \boldsymbol{d}_{2} is mean color-magnetic
 field along spin
- Nachtmann moments needed to get twist-3 free of tmc

$$
\boldsymbol{d}_{2}\left(\boldsymbol{Q}^{2}\right)=\int_{0}^{1} d x \xi^{2}\left(2 \frac{\xi}{x} g_{1}+3\left(1-\frac{\xi^{2} M^{2}}{2 Q^{2}}\right) g_{2}\right) \Rightarrow_{Q^{2} \rightarrow \infty} \int_{0}^{1} d x x^{2}\left(2 g_{1}+3 g_{2}\right)
$$

Operator Product Expansion for Spin SF's

- OPE relates Cornwall-Norton moments to matrix elements of twist-2 $\boldsymbol{a}_{\mathrm{N}}$ and twist- $3 \boldsymbol{d}_{\mathrm{N}}$ $\int_{0}^{1} x^{N} g_{1}\left(x, Q^{2}\right) d x=\frac{\boldsymbol{a}_{N}}{2}+t m c, \quad N=0,2,4, .$.
$\int_{0}^{1} x^{N} g_{2}\left(x, Q^{2}\right) d x=\frac{N\left(\boldsymbol{d}_{N}-\boldsymbol{a}_{N}\right)}{2(N+1)}+t m c, N=2,4, .$.
(tme :target mass corrections)
- \boldsymbol{d}_{2} is mean color-magnetic field along spin
- Nachtmann moments needed to get twist-3 free of tmc

- SANE analysis final version
- Publications in preparation

$$
\boldsymbol{d}_{2}\left(\boldsymbol{Q}^{\mathbf{2}}\right)=\int_{0}^{1} d x \xi^{2}\left(2 \frac{\xi}{x} g_{1}+3\left(1-\frac{\xi^{2} M^{2}}{2 Q^{2}}\right) g_{2}\right) \Rightarrow_{Q^{2} \rightarrow \infty} \int_{0}^{1} d x x^{2}\left(2 g_{1}+3 g_{2}\right)
$$

$G_{\mathrm{E}}{ }^{\mathrm{p}} / G_{\mathrm{M}}{ }^{\mathrm{p}}$ from inclusive and coincidence

data

Ratio from:

- SANE inclusive HMS data at $Q^{2}=2.06 \mathrm{GeV}^{2}$
- $A_{\text {el }}^{\text {p }}=-0.20 \pm 0.02$
- $G_{\mathrm{E}}^{\mathrm{p}} / G_{\mathrm{M}}^{\mathrm{p}}=0.60 \pm 0.18 \pm 0.06$
(statistical + systematic error)
- BETA-HMS $e-p$ coincidences at $Q^{2}=5.66 \mathrm{GeV}^{2}$
- $G_{\mathrm{E}}^{\mathrm{p}} / G_{\mathrm{M}}^{\mathrm{p}}=0.67 \pm 0.36$
(statistical error only)

SANE Collaboration (E-07-003)
P. Solvignon

Argonne National Laboratory, Argonne, IL
E. Brash, P. Carter, A. Puckett, M. Veille ux

Christopher Newport University, Newport News, VA
W. Boeglin, P. Markowitz, J. Reinhold

Florida International University, Miami, FL
I. Albayrak, O. Ates, C. Chen, E. Christy, C. Keppel, M. Kohl, Y. Li, A. Liyanage, P. Monaghan, X. Qiu,

> L. Tang, T. Walton, Z. Ye, L. Zhu

Hampton University, Hampton, VA
P. Bosted, J.-P. Chen, S. Covrig, W. Deconink, A. Deur,
C. Ellis, R. Ent, D. Gaskell, J. Gomez, D. Higinbotham, T. Horn, M. Jones, D. Mack, G. Smith, S. Wood Thomas Jefferson National Accelerator Facility, Newport News, VA
J. Dunne, D. Dutta, A. Narayan, L. Ndukum, Nuruzzaman Mississippi State University, Mississippi State. MS
A. Ahmidouch, S. Danagoulian, B. Davis, J. German, M. Jones

North Carolina A\&M State University, Greensboro, NC
M. Khandaker

Norfolk State University, Norfolk, VA

> A. Daniel, P.M. King, J. Roche
> Ohio University, Athens, OH
A.M. Davidenko, Y.M. Goncharenko, V.I. Kravtsov,
Y.M. Melnik, V.V. Mochalov, L. Soloviev, A. Vasiliev Institute for High Energy Physics, Protvino, Moscow Region, Russia
C. Butuceanu, G. Huber

University of Regina, Regina, $S K$
V. Kubarovsky

Rensselaer Polytechnic Institute, Troy, NY

L. El Fassi, R. Gilman

Rutgers University, New Brunswick, NJ

S. Choi, H-K. Kang, H. Kang, Y. Kim

Seoul National University, Seoul, Korea
M. Elaasar

State University at New Orleans, LA
W. Armstrong, D. Flay, Z.-E. Meziani, M. Posik, B. Sawatzky, H. Yao

Temple University, Philadelphia, PA
O. Hashimoto, D. Kawama, T. Maruta,
S. Nue Nakamura, G. Toshiyuki Tohoku U., Tohoku, Japan
K. Slifer

University of New Hampshire
H. Baghdasaryan, M. Bychkov, D. Crabb, D. Day, E. Frlez,
O. Geagla, N. Kalantarians, K. Kovacs, N. Liyanage,
V. Mamyan, J. Maxwell, J. Mulholland, D. Pocanic,
S. Riordan, O. Rondon, M. Shabestari

University of Virginia, Charlottesville, VA
L. Pentchev

College of William and Mary, Williamsburg, VA
F. Wesselmann

Xavier Unniversity, New Orleans, LA
A. Asaturyan, A. Mkrtchyan, H. Mkrtchyan, V. Tadevosyan

Yerevan Physics Institute, Yerevan, Armenia
SANE Ph.D. student, M.S. Student, Student
(Affiliations as of end of run - March 2009)

Extras

DIS Transverse $\operatorname{Spin} \operatorname{SF} \boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}$

- $\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}=\boldsymbol{F}_{1} \boldsymbol{A}_{2} / \gamma$ measures spin distribution normal to γ^{*}
- $\operatorname{SANE}\left\langle\boldsymbol{g}_{\mathrm{T}}{ }^{\mathrm{p}}(x>.3)>=0.023 \pm 0.006\right.$

- Bag Model (1990's)
- Data scaled $\times 2.5$
- Model updates needed

Sample of Normalizations and corrections

Pair-symmetric background - I

- BigCal detects both charge signs
- Significant background from $e^{+} e^{-}$from π^{0} decays
- Partial control with cut on $E^{\prime} \geq 1.3 \mathrm{GeV}$; worst dilution $<\sim 0.2$
- Estimate with GEANT simulation of π^{0} production
- Need inclusive pion photo- and electro-production cross sections
- Existing D. Wiser parametrization only for H, D targets
- Parameterized Yerevan pion photoproduction data on C at 4.5 GeV
- Cross section scales with pion P_{T} : use simple exponential scaling fit
- Included fit in J. O'Connell EPC code for single arm hadron photo and electroproduction
- Compared with DESY electroproduction on C at 5 GeV

Pair-symmetric background - II

K. Alanakian et al., JETP Lett. 32 (1980) 652

- Fitted π^{+}, π^{-}data at $20^{\circ}, 40^{\circ}$, 60° to $\boldsymbol{\sigma}\left(\boldsymbol{P}_{\mathrm{T}}\right)=\boldsymbol{a} \boldsymbol{e}^{-b \boldsymbol{T} \mathrm{~T}}$

- Wiser π^{-}data on H, scaled $12 \times$, along with π^{-}data on C and scaling fit to C data.
- π^{0} fit from average of π^{+}and π^{-}

Pair-symmetric background - III

- Test of scaling fit with DESY $\mathrm{C}\left(\mathrm{e}, \pi^{-}\right)$data at $5 \mathrm{GeV}, 13^{\circ}$
[1] J. O'Connell CEBAF Summer Workshop, F. Gross and J. Lightbody, ed., Newport News, 1988, p. 345

Jefferson Angular Momentum - JAM Collaboration

- Joint theorists and experimentalists effort to "study the quark and gluon spin structure of the nucleon by performing global fits of PDFs".
- JAM's spin PDFs are tailored for studies at large Bjorken \underline{x}, as well as the resonance-DIS transition region at low and intermediate \boldsymbol{W} and \boldsymbol{Q}^{2}. http://wwwold.jlab.org/theory/jam/

Big Electron Telescope Array - BETA

- BETA specs
- Effective solid angle 0.194 sr
- Energy resolution

$$
10 \% / \sqrt{ } E(\mathrm{GeV})
$$

- 1000:1 pion rejection
- angular resolution $\sim 1 \mathrm{mr}$
- Non-magnetic detector
- detects DIS e and $e^{+} e^{-}$pairs: need to cut on minimum E^{\prime}
- Target field helps sweep lowest E background ($180 \mathrm{MeV} / \mathrm{c}$ cutoff)

Nucleon Spin beyond G_{1} and G_{2}

- Need to go beyond a_{0} to understand nucleon spin
- Orbital angular momentum (OAM) \boldsymbol{L} is needed.
- Partons have transverse momentum, implies OAM
- Mulders et al., Transverse Momentum dependent Distributions - TMDs
- functions of x and k_{t}
- Semi-inclusive scattering (detect final e, one hadron)

Transverse Momentum Distributions by Polarization			
Target \downarrow \quark \rightarrow	U	L	T
U	$f_{1}\left(x, k_{t}\right)$		$h_{1}{ }^{\perp}$
L		g_{1}	$h_{11}{ }^{\text {d }}$
T	$f_{1 T}{ }^{\text {d }}$	$g_{1 T}{ }^{\text {- }}$	$h_{1} h_{1 T}{ }^{\text {d }}$

Longitudinal SSF (leading twist)
$g_{1}(x)=\sum g_{1}^{q}(x)=\sum \int d^{2} \vec{k}_{t} g_{1 L}\left(x, \vec{k}_{t}^{2}\right)$
Transverse SSF (twist-3)
$g_{1 \mathrm{~T}}^{(1)}(x)=\sum g_{1 \mathrm{~T}}^{q(1)}(x)=\sum \int d^{2} \vec{k}_{t} \frac{\vec{k}_{t}^{2}}{2 M^{2}} g_{1 \mathrm{~T}}^{q}\left(x, \vec{k}_{t}^{2}\right)$
$g_{T}(x)=g_{1}(x)+\frac{d}{d x} g_{1 \mathrm{~T}}^{(1)}=g_{1}(x)+g_{2}(x)$

[^0]: [1] BigCal Collaboration
 [2] North Carolina A\&T U.
 [3] Temple U

