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HI Collisions

Nuclear collisions and the QGP expansion
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QGP - Quark Gluon Plasma

The Big Bang
- Existed a few millionths of a
second after.

The Little Bang

- Recreated in the lab using
relativistic collisions of heavy
lons

http://www.bnl.gov/rhic/news2/news.asp?a=2870&t=today
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« Jet quenching observed in AA collisions (strong interaction of medium with
high-p; particles )
« Jet “Structure” modification ?
 What do we know about the “lost” energy ?
« Flavor dependence of strong coupling with the medium?
« Jet quenching at CMS

 What can we learn from pPb collisions?
 Initial state, Cold Nuclear Matter effects?

« Datasets:
PbPb (2011) and pp (2013) @ 2.76 TeV
pPb (2013) @ 5.02 TeV
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Questions to be answered (pictorially)

Can we recover the lost
energy by jet reconstruction?

Flavor dependence of jet
quenching?
Is the initial state modified? L3

medium

Y.J Lee QM2014

Is the jet structure modified? Where does the lost energy go?

s
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\What we measure

Vsnn = 2.76 TeV
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CMS

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS rI - —I n (ta n 9/2 )
Overall diameter : 15.0m Pixel (100x150 ym) ~16m* ~66M channels

Overalllength  :28.7m

Microstrips (80x180 ym) ~200m? ~9.6M channels
Magnetic field :3.8T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER

//////////////(’ : S . ) Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels
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Jets in CMS

clusters and tracks

HCAL
Clusters

Anti-k; algorithm is used
in most of CMS publications

Particles Towers Jet

neutral
hadron
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_ Background
Forinstance, AnXA¢  sybtraction and
0.076 x 0.076 in barrel jet clustering

Calorimeter (CALO) Jets: Using
Calorimeter energy deposits.
Particle Flow (PF) Jets: Combines
information from all sub detectors to
make PF candidates, which are then
clustered.
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Background subtraction

1. Background (bkg) energy ¢
per tower calculated in strips of n

2. Jet finder run on subtracted
(sub) towers

3. Background energy
recalculated excluding jets

4. Rerun Jet algo on bkg-sub
towers without jets -> get the final
jets.

Raghav K E, GHP 2015

EPJC (2007) 117.

(2) Run IC5 jet finder on subtracted towers

O
O @

(4) Re-run IC5 i finder on subtracted towers
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Jet Quenching: Observation

PLB 712 (2012) 176
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collisions
 Dijet p; imbalance observed

(pT, 2/pT, 1>

PbPb - MC

« Strong jet-quenching in PbPb

Miraculously flat over the
pr range observed!
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PLB 712 (2012) 176

Leading jet

Jet 0, pt: 205.1 GeV
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What do we learn from jets?

How are tracks aligned?

Track energy distribution
Inside jet ? oo

Can we just increase the
Jet radius?

Shape of jet ?

CMS /|
%% Raghav K E, GHP 2015 11 Rutgers University, NJ



Jet Fragmentation

10
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Shape modification?

PLB 730 (2014) 243
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Broader jet shapes in PbPb in most central collisions
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Where does the energy go?

Sum charged particles for
unbalanced A ;>0.22 dijets in
central (0-30%) PbPb

« 35 GeV/c of high p; tracks
missing from away side jet
at AR=0.2

« Balanced by low p- particles
up to very large AR=2.0

* PDbPb-pp : result shows a
different p distribution

« Take the p; cumulative of all
tracks — total angular pattern
is similar in PbPb and pp

<?;> (GeV/c)

p, >120, p, 50 GeVic
i, <0.50, ¢, >5n/6
anti-k; Calo R=0.3
A,>022,In |<2.4
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3o05-1.0020-4.0
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/" ---pp cumulative

— PbPb cumulative

Able to recover the lost energy by going to
Large AR in the away side jet
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Initial State effects - pPb

CMS-HIN-14-001

CMS Preliminary, pPb \s, = 5.02 TeV
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}

Raa =

Nuclear modification factors

]ets / dp T ]ets / de

<Ncoll> Nyl /dpr (T )dffpp /dpr

jets

<N,,> - No of participating
nuclei per event

O - Cross section

<Taa> - Average value of the
nuclear ‘thickness’ function

Raa > 1 Enhancement
Raa = 1 : no medium effect
Raa < 1 : Suppression/
quenching Jet

In medium parton energy loss

-2 “Jet quenching”
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Modification in PbPb vs pPb for light and heavy jets

pPb \s , =5.02 TeV PbPb \s,, =276 TeV
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We do not observe any quenching for in the pPb case but a
large suppression factor in the most central PbPb collisions
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Heavy flavor Jets

up-type:

Displaced
Strong

cks
' B-quark decays are Seconda
heavily CKM-suppressed Vertex
. -> Long lifetimes , .,
Weak ‘ ny,/ !
down-type: - g

~~u
-

Primary
Vertex

* Primary identification method

is using a Secondary Vertex  Jet
— Long lifetime of b = mm or cm vertex displacement

* Flight distance (L,,) of the secondary vertex used as a
discriminating variable

 Tagging methods independent of secondary vertex

reconstruction used as cross-check Algorithms described in:
JINST 8 (2013) P04013

cms, |
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Modification in PbPb vs pPb for light and heavy jets
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No observable difference between inclusive and b-jets in the explored p, range
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Conclusions

Many observables showing independent confirmation of modification of jets in the
medium (final state interactions)

Jets are heavily quenched in most central PbPb collisions
Jet Structure modification:

« Excess of low p; particles inside the jet cone (A; measurements)

« Observe quenching of intermediate range p; particles (Jet Fragmentation)
Quenched energy recovered by going to higher radii.

» Lost energy carried away by low p; particles away from the jet cone (Jet+Track
measurements)

Flavor dependence: So far no glaring differences between tagged and inclusive jets
(in the explored p; range). Need results from fully reconstructed D, B mesons (in
both PbPb and pPb) to extend the pT range.

Initial state in pPb collisions can be described by nPDF
* Inclusive jets are not quenched
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Back up Slides
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Jets in CMS — part 2

clusters and tracks Particles

Clusters : ¢ :
. neutral |
hadron

Anti-k; algorithm is used
in most of CMS publications

M,

| cMs Experiment at LHC, . CERN
¢ ‘ Data recorded: Sun Nov 14 19:31:39 2010 CEST
\ !
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Not used in the latest
HF/Voronoi algorithm

Background
subtraction and
jet clustering

_ 4

Calorimeter (CALO) Jets: Using
Calorimeter energy deposits.
Particle Flow (PF) Jets: Combines
information from all sub detectors to
make PF candidates, which are then
clustered.
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HF/Voronoi algorithm

CMS-DP-2013-018

A Voronoi diagram in the (eta, phi)- plane is used to associate an unique area to each
particle such that the UE density can be removed particle-by-particle
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Voronoi tessellated HYDJET/GEANT particle-flow event (combined tracks and calorimeter
towers) before (left) and after (right) subtraction.

Non physical negative particle/areas are “equalized” to maximally approximate to the
original (real) jet distribution of radius R. (backup slides)

Flow (v2,..,v5) accounted for by projecting the expectation from the HF
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