Measurement of the weak decay $\Lambda \rightarrow p\pi^-$ constant α_-

Run group proposal to run with E12-12-002A (GlueX-II)

Presented on behalf of: P. Hurck, D. Glazier, K. Livingston, F. Afzal, A. Thiel, Y. Wunderlich, V. Crede, M. Dalton Endorsed by the GlueX Collaboration

- Running with the remaining part of GlueX-II 118 PAC days
- Does not require any new equipment or configuration
- Does require a longitudinal electron beam polarization in Hall D: a matter of scheduling - optimization of the polarization for all halls, typically feasible by a selection of the linac energy and the initial spin rotation

Asymmetry parameter of the weak decay $\Lambda \rightarrow p \pi^-$

 $rac{dN}{d\Omega} \propto \left(1 + \mathrm{P}_{\Lambda} lpha_{-} \cos heta
ight)$

- P_{Λ} polarization of Λ
- α₋ the decay asymmetry parameter
 - The asymmetry is parity-violating
 - Interference of S and P-waves (weak decays violate P)
 - Decays of unpolarized Λ produce longitudinally polarized protons $\mathbf{P}=\alpha_-$
 - α₋ was measured in many experiments since 1960-s; it has been used as an ingredient in many other polarization measurements

A considerable revision of the measured value occurred in 2019

Measurements before 2019

Mostly measuring the final proton polarization PDG 2018

I **DECAY PARAMETERS**

See the "Note on Baryon Decay Parameters" in the neutron Listings. Some early results have been omitted.

α_{-} FOR $\Lambda \rightarrow p\pi^{-}$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.642±0.013 O	UR AVERAGE				
0.584 ± 0.046	8500	ASTBURY	75	SPEC	
0.649 ± 0.023	10325	CLELAND	72	OSPK	
0.67 ± 0.06	3520	DAUBER	69	HBC	From Ξ decay
0.645 ± 0.017	10130	OVERSETH	67	OSPK	Λ from $π^- p$
0.62 ± 0.07	1156	CRONIN	63	CNTR	Λ from $\pi^- p$

$\alpha_-=\textbf{0.642}\pm\textbf{0.013}$

Measurements before 2019

Mostly measuring the final proton polarization PDG 2018

	Decay param	eters	
l	$ ho\pi^-$	$lpha_{-}=$ 0.642 \pm 0.013	2018
1	$\overline{\rho}\pi^+$	$lpha_{\pm}=-$ 0.71 \pm 0.08	

I **DECAY PARAMETERS**

See the "Note on Baryon Decay Parameters" in the neutron Listings. Some early results have been omitted.

 α_{-} FOR $\Lambda \rightarrow p\pi^{-}$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.642±0.013 O	UR AVERAGE				
0.584 ± 0.046	8500	ASTBURY	75	SPEC	
0.649 ± 0.023	10325	CLELAND	72	OSPK	
0.67 ± 0.06	3520	DAUBER	69	HBC	From Ξ decay
0.645 ± 0.017	10130	OVERSETH	67	OSPK	Λ from $\pi^- p$
0.62 ± 0.07	1156	CRONIN	63	CNTR	Λ from $π^- p$

 $\alpha = 0.642 \pm 0.013$

New precision measurements

BESIII
$$e^- + e^+ \rightarrow J/\psi$$
 ($m = \pm 1$)

$$J/\psi
ightarrow \Lambda\overline{\Lambda}; \quad \Xi\overline{\Xi}$$

Ablikam et al, Nature Phys. 15 (2019), PRL 129 (2022)

 $\alpha_{-}=~0.7519\pm0.0036\pm0.0024$

 $\alpha_{+} = -0.7559 \pm 0.0030 \pm 0.0024$

CLAS data $\gamma p \rightarrow K^+ \Lambda$ used

Ireland et al, PRL 123, 182301 (2019) Beam circular and linear polarization Formalism for pseudoscalar photoproduction

 $lpha_{-} = 0.721 \pm 0.006 \pm 0.005$

3/8

E.Chudakov

PAC52, Jul 2024

3/8

Measurement methodology for $\gamma p \rightarrow K^+ \Lambda^0$, $\Lambda^0 \rightarrow p \pi^-$ reaction

Ireland et al, PRL 123, 182301 (2019) and references therein

Beam polarization

P₁ - linear

1

P_C - circular

CM frame

- \vec{k} photon momentum
- \vec{q} Λ momentum
- Φ angle between the linear polarization and reaction planes

$$\vec{z} = \frac{\vec{q}}{|\vec{q}|}, \quad \vec{y} = \frac{\vec{k} \times \vec{q}}{|\vec{k} \times \vec{q}|}, \quad \vec{x} = \vec{y} \times \vec{z}$$

$$\vec{p} \text{ - proton momentum}$$

$$\cos \theta_x = \vec{p} \cdot \vec{x}/|p|, \ \cos \theta_y = ...$$

$$\begin{aligned} (W, t) &= 1 + \alpha_{-}\cos\theta_{y}P \\ &- P_{L}\cos\left(2\Phi\right)(\Sigma + \alpha_{-}\cos\theta_{y}T) \\ &- P_{L}\sin\left(2\Phi\right)\alpha_{-}\left(\cos\theta_{x}O_{x} + \cos\theta_{z}O_{z}\right) \\ &- P_{C}\alpha_{-}\left(\cos\theta_{x}C_{x} + \cos\theta_{z}C_{z}\right) \end{aligned}$$

Constraints - Fierz identities:

$$O_{x}^{2} + O_{z}^{2} + C_{x}^{2} + C_{z}^{2} + \Sigma^{2} - T^{2} + P^{2} = 1$$

$$\Sigma P - C_{x}O_{z} + C_{z}O_{x} - T = 0$$

 Φ , $\cos \theta_x$, $\cos \theta_y$, $\cos \theta_z$ are measured Unknown: α_- and 7 polarization observables (P.O.): P, Σ , T, O_x , O_z , C_x , C_z may depend on W, tFit data in (W, t) bins and extract α_-

Ireland et al., 2019

- Used published CLAS results on different sets of P.O. extracted in different (*W*, *t*) areas
- Only 5 P.O. measured in the common (W, t) area
- Interpolation or extrapolation used

E.Chudakov PAC52, Jul 2024

Measurement of α

Proposed measurement in Hall D with GlueX-II

- Use $\gamma p \rightarrow K^+ \Lambda^0$, $\Lambda^0 \rightarrow p \pi^-$, similar to *Ireland 2019*.
- Expected improvements: better understanding of the systematic errors

Pilot measurement in Hall D

- 2023: beam helicity signal added to DAQ
- GlueX-II 2023 run, 5% of data analyzed (1.5 PAC days equiv.), 8.5k K⁺Λ
- Longitudinal electron polarization of ${\sim}70\%$ projected from Halls A/C measurements
- The photon beam elliptical polarization is derived from the electron beam longitudinal polarization and the linear polarization measurement
- Fit results: $\alpha_{-} = 0.75 \pm 0.11(stat)$
- Used to project the statistical error

Projection to the proposed measurement

- Assume electron polarization of $P_e \sim \! 80\%$
- $\delta(\alpha_{-})(stat)$ would double for $P_e \sim 40\%$
- Weak impact from the $\delta(P_e)$ on $\delta(\alpha_-)(syst)$
- Anticipating improvements in measuring P_L
- Projected: $\alpha_{-} = ? \pm 0.012 \pm 0.021$

Systematic error budget

· · · · · · · · · · · · · · · · · · ·			
	δ	contib. to $\delta(\alpha_{-})$	
		%	absolute
Photon beam circular P _C	2%	<0.2%	<0.002
Photon beam linear P_L	<2%	<4%	<0.03
Acceptance	2%	2%	0.015
Σ^0 contamination	<2.5%	<0.3%	< 0.002
Total (current upper limit)		<4.5%	<0.034
Total (anticipated)		<2.8%	<0.021

E.Chudakov

Proposed measurement in Hall D with GlueX-II

- Use $\gamma p \rightarrow K^+ \Lambda^0$, $\Lambda^0 \rightarrow p \pi^-$, similar to *Ireland 2019*.
- Expected improvements: better understanding of the systematic errors

Projection to the pr	oposed	measure	ement		
• Assume electron polarization of $P_e \sim 80\%$					
• $\delta(\alpha_{-})(stat)$ would double for $P_e \sim 40\%$					
• Weak impact from the $\delta(P_e)$ on $\delta(\alpha)(syst)$					
• Anticipating improvements in measuring PL					
• Projected: $\alpha_{-} = ? \pm 0.012 \pm 0.021$					
Systematic error budget					
Systemati	ic error bud	dget			
Systemati	$\frac{\delta}{\delta}$	dget contib.	to $\delta(\alpha_{-})$		
Systemati	$\frac{\delta}{\delta}$	dget contib. %	to $\delta(\alpha_{-})$ absolute		
Photon beam circular P _C	ic error bud δ 2%	dget contib. % <0.2%	to $\delta(\alpha_{-})$ absolute < 0.002		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<u>δ</u> 2% <2%	dget <u>contib.</u> % <0.2% <4%	$rac{\delta(lpha)}{ ext{absolute}} < 0.002 < 0.03$		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<u>δ</u> 2% <2% 2%	dget <u>contib.</u> % <0.2% <4% 2%	$\frac{\text{to } \delta(\boldsymbol{\alpha}_{-})}{\text{absolute}} \\ < 0.002 \\ < 0.03 \\ 0.015 \\ \end{cases}$		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<u>c error bud</u> δ 2% <2% 2% <2.5%	dget <u>contib.</u> % <0.2% <4% 2% <0.3%	$to \ \delta(\alpha_{-})$ absolute <0.002 <0.03 0.015 <0.002		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<u>c error buc</u> δ 2% <2% 2% <2.5%	contib. % <0.2%	to $\delta(\alpha_{-})$ absolute <0.002 <0.03 0.015 <0.002 <0.034		

E.Chudakov

PAC52, Jul 2024

Measurement of α

Summary

- α_{-} is an important constant and an ingredient for other polarization measurements
- The measurement in Hall D would be independent of the BESIII methodology and without drawback of the *Ireland et al, 2019* measurement
- It will run in parallel with the remainder of GlueX-II
- The only requirement is a longitudinal electron beam polarization. With the regular diamond radiator it will provide an elliptical polarisation of the photon beam
- The photon beam elliptical polarization also enables:
 - Measurements of third components of SDMEs and additional constraints for amplitude analysis (core GlueX program)
 - Σ weak decay asymmetry measurement
 - Others...

BACKUP

Influence of Coherent Radiation on Circular Polarization

The effect is small and well predicted. The calculation is done for $P_e = 53\%$.

