

PR12-14-012 Isospin structure of 3N short-range correlations and the nucleon structure functions in ³H and ³He

A proposal to PAC52

Spokespersons: John Arrington (LBNL), Burcu Duran (UTK) , Nadia Fomin (UTK), Tyler Hague (LBNL), Douglas Higinbotham (Jlab), <u>Shujie Li (</u>LBNL), David Meekins (JLab)

> PAC52@JLab July 9, 2024

Isospin structure of 3N short-range correlations and the nucleon structure functions in ³H and ³He

- Use (e,e') inclusive QE scattering to isolate the high-momentum nucleons in nuclei
- Compare the momentum and isospin configuration in ³H and ³He
- Great kinematic reach with Hall C SHMS
- Parallel F₂ n/p study with HMS

How nucleons move in nuclei and interact with each other?

Schrödinger equation:

$$ig[\sum_i -rac{\hbar^2}{2m_N}
abla_i^2 + \sum_{i < j} v_2(oldsymbol{x}_i,oldsymbol{x}_j) + \sum_{i < j < k} v_3(oldsymbol{x}_i,oldsymbol{x}_j,oldsymbol{x}_k) + ...ig] \Psi_A = E_A \Psi_A$$

"The main effects of NN correlations is to generate high momentum and high removal energy components"

Decades of 2-nucleon Short-Range Correlation studies

Fe/D (e,e') @SLAC

Our approach: probing high momentum nucleons in (e,e')

Inclusive QE scattering on 2N SRC:

Our approach: probing high momentum nucleons in (e,e')

Inclusive QE scattering on 2N SRC:

Competing processes:

- Meson-exchange current (MEC):
 - 1/Q² suppression
- Isobar Current (IC):
 - 1/Q² and x>1 suppression
- Final State Interactions (FSI):
 - contained within the SRC pair at large Q²

This proposal: 3N SRC study with A=3 mirror nuclei

- Searching for 3N configurations in which all 3 nucleons has momenta above Fermi momentum
- Understanding momentum-isospin configurations in A=3 systems

- Cleanest and minimum nuclear systems to study 3N SRC
- Similar separation energy:
 - 6.26 MeV v.s. 5.49 MeV
- Small Coulomb effect:
 - V_eff = 0.66 MeV v.s. 0
- Small Fermi momentum:
 - < 100 MeV

The previous (and first) tritium project @ JLab

Hall A Tritium Experiments in 2018

E12-10-103 "MARATHON" F2n/p, EMC 10.1103/PhysRevLett.128.132003

E12-14-011 SRC with (e,e'p) 10.1016/j.physletb.2019.134890, 10.1103/PhysRevLett.124.212501

E12-11-112 SRC with (e,e')

2N SRC: SL et al, Nature 609, 41-45 (2022)
GMn: N. Santiesteban et al, Phys.Rev.Lett. 132 (2024)
16, 162501
3N SRC: SL et al, arXiv:2404.16235, submitted to PRL

E12-17-003 nnL hypernuclei

10.1103/PhysRevC.105.L051001

E12-11-112: Study 2N SRC isospin with A=3

E12-11-112: Study 2N SRC isospin with A=3

E12-11-112: hint of 3N SRC scaling?

larger x \rightarrow larger momentum \rightarrow 2N+3N SRC?

E12-11-112: check onset of SRC scaling

- Scaling down to Q² = 1 GeV² :
 - More cancellation between FSI, CM motion
 - Cancellations should be nearly complete in ³H/³He
- Onset at $\alpha_{2N} < 1.2 \rightarrow \text{pmin} \sim 200 \text{ MeV}$
 - Earlier onset in α_{2N} due to lower mean-field momenta: k_F <100 MeV in A=3
 - Same for ³H/³He, plus expect cancellation between MF contributions where it's small but not negligible

E12-11-112: check onset of SRC scaling

PR12-24-012: proposed kinematics

	E12-11-112 (E12-14-011)	PR12-24-012		
		kin1	kin2	
Beam Energy	4.3 GeV	11 GeV	8.8 GeV	
Spectrometer HRS@Hal		SHMS@Hall C	SHMS@Hall C	
Angle	Angle 17.0 - 20.88		9	
Central				
momentum	3.54 - 3.94 GeV	9.8 GeV	8.2 GeV	
Q2	1.4 - 1.9	2.8	1.8	

SHMS in standard configuration to detect scattered electrons

- Good momentum resolution (v.s. Hall B)
- Higher central momentum range, smaller angle (v.s. Hall A) \rightarrow higher rates
- Large momentum acceptance

PR12-24-012: target system

Exactly the same target cell design from Hall A:

- 25cm long sealed Alloy cell, hold 1000 Ci tritium
- Well-understood target properties: density fluctuation, decay etc
- Beam current < 25uA and other **safety** measures
- Successful cooperation with Savannah River Site

- Use **collimator** (tungsten bricks) to block endcaps
 - Remove contamination and reduce rates
 - Similar to A1n/D2n design
 - Effective target length -5.5<z<9cm

Charge Normalized Yield

PR12-24-012: beam time estimations

Items

Kin 1 production

Kin 1 calibration

Kin 2 production

Kin 2 calibration

Installations and configuration changes

Total

PAC Days

34

5

10

 $\mathbf{2}$

 $\mathbf{2}$

53

Optics, target "boiling", an<u>d</u> background studies Deuteron data for cross check

5k events on ³H and ³He (prescaled)

10k events on ³H and ³He

- Hall C single arm simulation
- DIS+QE+elastic cross section model fitted to tritium data
- Radiative correction included
- 90% efficiency, 14.5cm effective target length, 10% density reduction with beam

Searching for 3N SRC plateau:

- Reach α_{3N} = 1.75 \rightarrow pmin=800 MeV
- Two Q² settings to confirm scaling
- Measure the expected 3N SRC plateau in high precision
- 2% systematics in ratio

PR12-24-012: sensitivities

PR12-24-012: theory predictions

Summary

0.9

.0

2

3

4

- 53 PAC days to search for 3N configurations in which all 3 nucleons has momenta above Fermi momentum
- Developed upon the success of 2018 tritium experiments at JLab, with improved kinematics @
- Unique A=3 mirror nuclei comparison to understand momentum-isospin correlations in 3N
- Combined analysis of $A/(^{3}H+^{3}He)$

1.8

 α_{3N}

1.6

.5

Parallel measurement: ${}^{3}H/{}^{3}He \rightarrow F_{2} n/p$

0.2

0.8

 $Q^2 = 10 \text{ GeV}^2$

0.2

0.4

0.6

 \boldsymbol{x}

0.1 JAM (no marathon)

0.4

0.6

 \boldsymbol{x}

0.8

Parallel measurement: ${}^{3}H/{}^{3}He \rightarrow F_{2} n/p$

• HMS from 18 to 40 degrees

- Parallel DIS data-taking with HMS
- Up to 50% more stats than MARATHOn at large x
- Independent check of normalization
- Double the ³H/³He data for global fit

Thank you!

SRC kinematics

					at	x = 2.5	
Kinematics	Ebeam	Momentum	Angle	Total Rate	Events	Q^2	0
	(GeV)	(GeV)	(Degree)	(kHz)	(per hour)	(GeV^2)	$lpha_{3N}$
Kin1	11.0	9.8	9.0	2.8	12	2.8	1.6
Kin2	8.8	8.2	9.0	7.0	200	1.8	1.5

Table 1: Proposed kinematic settings for tritium and helium-3 measurements. The estimated total rates have no acceptance cuts, and include no contribution from entrance/exit aluminum window because the assumed use of tungsten block as collimator.

SRC kinematics

Items	PAC Days
Kin 1 production	34
Kin 1 calibration	5
Kin 2 production	10
Kin 2 calibration	2
Installations and configuration changes	2
Total	53

Table 2: Requested number of PAC days. The production includes tritium and helium-3 data taking. Calibration includes optics, endcap contamination study, boiling study, and other installation/adjustment time.

The statistics goal for this experiment is to reach 5k events per target at x=2.5 with Kin 1, and 10k events for Kin 2 (after prescale). That corresponds to 17 days, and 6 days of beam, respectively. 90% overall efficiency is assumed, as well as a 10% target density reduction due to the beam induced target gas density change [44]. Table 2 shows the requested 53 PAC days. The production days include tritium and helium-3 data taking. Calibration includes optics, endcap contamination study, boiling study, and other installation/adjustment tasks. It also includes deuterium data taking to allow for a cross check of the ³H/²H and ³He/²H ratios at x < 2, and studies of the acceptance for a well studied nucleus near the QE peak and the 2N-SRC tail. The projected ³H/³He statistics is shown in Figure 10.

F2 kinematics

•			

Ebeam	theta	E'	xbj
8.8	18	2.759	
8.8	20	2.841	
8.8	22	2.866	
8.8	25	2.774	
8.8	30	2.486	

0.195 0.225 0.255 0.285 0.315 0.345 0.375 0.405 0.435 0.465 0.495 0.525

Ebeam	theta	Ε'	xbj
			0.465
11	22	4.035	0.495
			0.525
			0.555
11	25	3.883	0.585
			0.615
			0.645
			0.675
11	30	3.456	0.705
			0.735
			0.765
			0.795
11	40	2.578	0.825
			0.855
			0.885

F2 impact study

Cubit fit for illustration

2N SRC scaling at x>1

Cross Section beyond x=2: three-nucleon SRCs?

Not-so-strong Isospin dependence in A=3 nuclei

 $= 0.854 \pm 0.010$

$$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{N_{np}\sigma_{np} + N_{pp}\sigma_{nn}}{N_{np}\sigma_{np} + N_{pp}\sigma_{pp}}$$

Offshell elastic xsection (de Forest "cc1") $\sigma = \sigma + \sigma = 2\sigma$

$$\sigma_{np} = \sigma_{ep} + \sigma_{en}, \sigma_{pp} = 2\sigma_{ep}$$

number of no to no pairs ratio in A=3 $R_{pp/np} = N_{pp}/N_{np}$

Apply corrections due to center-of-mass motion differences between np, pp in ³H and ³He (Ciofi degli Atti, Claudio and Morita, Hiko, 2017)

> Ratio of np/pp SRC pairs in A=3 nuclei: $R_{np/pp} = 4.3 \pm 0.4$

> > SL et al, Nature 609, 41-45 (2022)

SRC Plateau / Bjorken x-scaling

N. Fomin, et al., PRL 108 (2012) 092052

Nucleon-Nucleon Potentials

Free nucleon-nucleon potential = Repulsive core + attractive tensor force S (spin) = 0, T (isospin) = 1: np, pp, nn pairs. The tensor operator $S_{1,2}$ = 0, no attractive tensor force

S (spin) =1, T (isospin) = 0: Deuteron-like np pair.

(e,e') x>1 data from 2018

LHRS@Hall A:

Deuterium, tritium and helium-3 targets E12-11-112 and E12-14-011

4-momentum transfer $Q^2=-q^2$ Bjorken x = $Q^2/2m(E_1-E_2)$

x>1: SL et al, Nature 609, 41-45 (2022)
GMn (see <u>Nathaly's talk</u> on Tuesday): N. Santiesteban et al, Phys.Rev.Lett. 132 (2024) 16, 162501

Cross Section beyond x=2: three-nucleon SRCs?

Previous A/³He ratio:

