

Nuclear Charm Production and Short-Range Correlations in Hall D Proposal C12-23-009

Spokespersons: D. Dutta (MSU), O. Hen (MIT), T. Kolar (TAU), **J. R. Pybus (MIT),** A. Schmidt (GWU), A. Somov (JLab), H. Szumila-Vance (JLab)

- PAC51 C2: 100 days, ⁴He, Hall D/GlueX
- Goals:
 - Precision SRC physics
 - Nuclear J/ψ photoproduction near and below threshold
- Conditionally approved:
 - ✓Understanding systematics
 - ✓ Publication of current results

Background on C12-23-009

1. Physics intro: SRC + J/ψ from current data

2. Meeting approval conditions: systematics & publications

Outline of this talk

What are SRCs?

Short-ranged, short-lived, highly correlated pairs of nucleons

Position-space

High relative and lower center-of-mass momentum

Momentum-space

SRCs studied with hard breakup reactions

High-Energy Electron

Struck Nucleon

Correlated Spectator

Results from on electron-scattering

PRL (2007), PRL (2014), Science (2014), PRL (2018)...

From electrons to photons

From electrons to photons Outgoing Meson Incident Struck Photon Nucleon Correlated Spectator

8

From electrons to photons Outgoing Meson Incident Struck Photon Nucleon $\sigma = \sigma_N(q) \times S(p_i, p_{rec})$ Correlated Spectator **Different reactions!** Same ground-state?

2021 SRC-CT Experiment

- 10.8 GeV + diamond radiator
- 19 days: ²H, ⁴He, ¹²C
- Standard Hall D setup

diamond wafer

First observation of SRCs in photoproduction

Data can constrain ab-initio theory at high momentum

A-dependent properties of SRCs also measured

SRCs are also related to medium-modification

Nature (2019); RMP (2017); IJMPE (2013); PRC (2012); PRL (2011)

- Structure functions
 potentially modified in
 SRCs
- Photon beams are sensitive to SRC gluons

J/ψ photoproduction probe nuclear gluons; Successfully observed in current data

Proposed data: Precision measurement of SRCs

Precision constraints of NN interaction at short distance

Resolution-dependence of SRC properties

Proposed data: Detailed measurement of nuclear J/ψ

PAC51 Report

- "(The first) observation of J/ ψ photoproduction from ⁴He."
- "High-precision and high-statistics... provide constraints on SRCs in 4He." "Direct test of the differences between photoproduction on mean-field and SRC nucleons."

PAC51 Report

- "(The first) observation of J/ ψ photoproduction from ⁴He."
- "High-precision and high-statistics... provide constraints on SRCs in ⁴He."
- "Direct test of the differences between photoproduction on mean-field and SRC nucleons."
- "The proposed SRC experiment will be limited by <u>systematic</u> errors. The committee feels that <u>publication</u> of the results of E12-19-003 is needed to allow for more accurate estimates of the systematic uncertainties and of the beam time request for the high-precision measurement."

Published Results: SRC-CT Search for Axion-Like Particles

- DOI: <u>10.1016/j.physletb.2024.138790</u>
- <u>arXiv: 2308.06339</u>

Final Results: Nuclear Photoproduction of J/ψ

Significant study of systematic uncertainties on extracted J/ψ cross section

	7-8.2 GeV		8.2-9.5 GeV			9.5-10.6 GeV			
Source of Uncertainty	D	He	С	D	He	С	D	He	C
Event Yield	-	7.2	6.0	7.7	27.1	15.1	16.1	15.8	31.6
Stat.	-	49%	47%	42%	21%	34%	29%	30%	33%
Sys: Lumi	1.6%			1.4%			2.1%		
Sys: Efficiency	0.6%	1.3%	1.0%	1.8%	1.7%	1.7%	2.7%	2.2%	2.1%
Sys: Fitting	-	16%	11%	29%	7%	8%	17%	10%	5%
Sys: Cuts	-	22%	25%	18%	12%	26%	21%	15%	8%
Sys: Bin-Centering	0.5%			1.1%			0.2%		
Total Sys.	-	28%	27%	34%	14%	27%	27%	18%	9.5%
Total	-	68%	70%	62%	33%	52%	46%	44%	43%

Table 3: Point-to-point uncertainties for the extracted total cross section in bins of beam photon energy E_{γ} , compared to the event yields.

*Data-driven systematics: improve with statistics

• Luminosity

- Luminosity
- Detector acceptance + efficiency

60

60

Counts

Counts

- Luminosity
- Detector acceptance + efficiency
- Yield extraction*

- Luminosity
- Detector acceptance + efficiency
- Yield extraction*
- Choice of selection criteria*

***Data-driven systematics: improve with statistics**

Differential cross sections also extracted from current combined-nuclei data

Backgroundsubtracted J/ψ yields

> Efficiency + acceptance corrections

Systematic uncertainties

"First Measurement of Near- and Sub-Threshold J/ψ Photoproduction off Nuclei"

Paper

<u>Note</u>

Detailed systematic study for J/ψ production

12

C12-23-009

- Overall Statistical
- ---- Overall Statistical (with TRD)
- Cut-Dependence
 - Yield Extraction
 - BH Yield
 - Efficiency

SRC photoproduction has been further studied

Key measurements:

 $(\gamma, \rho^- p)$

and

 $(\gamma, \rho^- pp)$

Signal Process: $\gamma n \rightarrow \rho^- p$

PID-related Backgrounds

Background: $\gamma n \rightarrow \rho^- \pi^+ n$

Misidentify π^+ as proton

Signal Process: $\gamma n \rightarrow \rho^- p$

Inclusive variables:

- Momentum-transfer: $t_M = (p_{\gamma} p_M)^2$
- Invariant mass: $W_M^2 = (p_\gamma + p_N p_M)^2 \sim m_N^2$

, Scaling variable: $y_M \equiv \frac{1}{2m_N(E_\gamma - E_M)}$

PID-related Backgrounds

Background: $\gamma n \rightarrow \rho^- \pi^+ n$

Misidentify π^+ as proton

Signal Process: $\gamma n \rightarrow \rho^- p$

Inclusive variables:

- Momentum-transfer: $t_M = (p_{\gamma} p_M)^2$
- Invariant mass: $W_M^2 = (p_\gamma + p_N p_M)^2 \sim m_N^2$

Scaling variable: $y_M \equiv \frac{1}{2m_N(E_{\gamma} - E_M)}$

PID-related Backgrounds

Background: $\gamma n \rightarrow \rho^- \pi^+ n$

Misidentify π^+ as proton

We can assume: $p_M = p_{\pi^0} + p_{\pi^-}$ OR $p_M = p_{\pi^+} + p_{\pi^0} + p_{\pi^-}$

SRC Backgrounds: Non-resonant $\pi^0\pi^-$

Approach 1: Side-band subtraction

SRC Backgrounds: Non-resonant $\pi^{0}\pi^{-}$

Approach 2: Bin-by-bin fitting

Primary systematic uncertainties are selection cuts and yield extraction method

Table 1: Projected sources of point-to-point uncertainty on measured SRC breakup yields in a typical kinematic bin expecting a yield of 50 SRC breakup events.

Source of Uncertainty	Contribution
Statistical	14%
Background	16%
Cut-dependence	10%
Yield extraction	15%
Total	28%

"Overall statistical": 21% – still statistically-dominated with larger dataset

Statistical precision improved with projected data, but still dominates over systematic uncertainty

Pushing to high momentum-transfer

Measured σ_{CM} [MeV/C]

At large momentum-transfer, statistical uncertainties increasingly dominate

Proposed data will give precision measurement of SRCs and resolution-dependence

Proposed data will give constraints on gluon content of nuclei

Summary

- 100 days: **helium-4** (95 days) and deuterium (5 days)
- Standard Hall D setup, equivalent to 2021 SRC-CT run
- Diamond radiator, 8 GeV coherent photopeak
- Semi-inclusive photoproduction measurement:
 - SRC breakup from (γ, mN) and (γ, mNN)
 - J/ ψ photoproduction from (γ , e^+e^-p)
- Expands program of previous E12-19-003 experiment

Extra Slides

Ground-state interpretation requires establishing factorization!

 $\sigma = \sigma_{e,N}(q) \times S(p_i, p_{rec})$

Reaction

Ground-State

 $S(p_i, p_{rec}) = \sum C_A^{\alpha} \cdot |\phi_{\alpha}(p_{rel})|^2 \cdot n(P_{CM})$

Example: PDF Universality

Deep-Inelastic Scattering

+ Q²-evolution from DGLAP

VS

Drell-Yan

= Universal framework for measuring parton structure of the proton

Hall D Experimental Setup

- Large-acceptance detector
- Solenoidal magnet:
 - Good p_T resolution
 - Poor p_7 resolution
- Time-of-flight allows particle identification for forward-going charged particles
- Calorimeters allows good acceptance and reconstruction of final-state photons

Missing-momentum resolution in SRC kinematics is good!

Data-driven resolution

Simulated resolution

Analysis on the light-front

Parton in Hadron

Parton momentum fraction

 x_B

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

 z_N z_A

Ĭ

Analysis on the light-front

Parton in Hadron

Parton momentum fraction

 X_B

Nucleon in Nucleus

Nucleon momentum fraction

$$\alpha_N \equiv A \frac{E_N - p_I^2}{E_A - p_A^2}$$

Light-front variables mitigate resolution effects

> Low-momentum nucleon $\alpha_N \sim 1$

Standing nucleon pair $\alpha_1 + \alpha_2 \equiv \alpha_{CM} \sim 2$

Cross section extracted from binned J/ψ yield

Total cross sections extracted as a function of energy

2021 SRC-CT Data

Target	Days of Beam	Luminosity (E _Y > 6 GeV)			
Deuterium	4	18.0 nucleus · pb-1			
Helium-4	10	16.7 nucleus · pb-1			
Carbon-12	14	8.6 nucleus · pb-1			

Comparison to PrimEx II Luminosity

- Increase in total beam time of 2.5:
- 55 × 0.7 → 100 PAC days
- Increase in photon flux by 3:
- $200 \text{ nA} \times 1\text{E-4 X}_0 \rightarrow 150 \text{ nA} \times 4\text{E-4 X}_0$
- Additional increase in photon energy <8 GeV by coherent diamond peak

