Photon Classification with AI at CLAS12

Gregory Matousek

"False Photon" Reconstruction at CLAS12

- Electromagnetic showers from final state particles (ex: e's , π's and K's) deposit their energy into the forward detector's ECALs
- CLAS12 reconstruction (pass1 & pass2)
 occasionally identifies the nearby energy
 depositions as *neutrals (γ or n)*
- ★ Leads to an excess of neutrals → backgrounds that are <u>unphysical</u>
 - Appears in both **Data** and **Monte Carlo**
- ★ *"False Photons"* are reconstructed γ 's that have no generated γ counterpart

Sample Monte Carlo Event pass1

Sample Monte Carlo Event pass1

Photon Reconstruction with pass2

MC electron

MC gamma

MC hadron

REC electron

REC gamma

REC hadron

MC π^0 gamma

File Location:

/lustre19/expphy/volatile/clas12/sdiehl/osg_out/clasdis/

- ★ "False Neutral" background still prevalent in pass2 reconstruction
- ★ Often found in groups, adjacent to other *false* neutrals → motivates nearest neighbor AI features

Pre-existing approaches to cut them away (at the cost of statistics and narrowing phase space)

- ★ Require one neutral per sector \rightarrow (used in π^0 calorimeter calibrations)
- ★ Stricter minimum neutral energy threshold (ex: $E_{\gamma} > 0.5$ GeV)

Photons in pass1/pass2

Plots are generated directly from the reconstructed GEMC files. A CLAS12 acceptance (5 < θ_{ν} < 35°) cut is applied

- Number of reconstructed photons outnumber those that are generated
- As a result, the combinatorial π^0 diphoton background increases \sim (**3x** for pass1, **2x** for pass2)

★ pass2 ★ Impact on ... SIDIS $\pi^+\pi^0$... Exclusive ϱ^+ , ω

Exclusive (M_{miss} < 1.2 GeV) region is *dominated* by false combinatoric backgrounds (MAGENTA and TEAL)

Exclusive ρ⁺ (M_{miss} < 1.2 GeV) region is *dominated* by false combinatoric backgrounds (MAGENTA and TEAL)

 $\Pi^0 \rightarrow \gamma \gamma$ background is a mix of true combinatoric (LIME GREEN) and false combinatoric (MAGENTA and TEAL)

Addressing the False Photon Background

Several SIDIS and Exclusive channels relying on forward detector photons are polluted by false photons (*even in pass2*)

Building the AI Photon Classifier

- Hand select features that are sensitive to <u>how/why</u> false photons are reconstructed
- 2. Avoid learning resonant structures (true combinatorial backgrounds are **OK**)
- 3. Compatible for *all* events (any number of photons!)

Motivating the Model's Features

Photon Classifier Architecture

Gradient Boosted Decision Trees

- ★ Many weak learners that improve classification performance over time
- ★ Trained on Monte Carlo simulations to identify "real physics" photons

Using open-source GBT library CatBoost

- ★ Handles empty inputs (useful for events with limited # of photons)
- ★ Vectorized Trees → Fast to train
- ★ 75% train, 25% validation → Avoids overfitting problem
- ★ 1000 trees, 10 layer depth, $λ_{LR} = 0.1$, LogLoss Evaluation Metric

Photon Classifier Parameters

Intrinsic to the Photon

- Total calorimeter energy (E)
- Total PCAL energy (E_{PCAL})
- Calo shape 2nd moments (m2u, m2v)
- Scattering angle (θ)

Nearest Neighbor Features

No relative energy for nearest photons. This would promote learning the π^0 resonance

- N_g nearest photons \rightarrow Radial distance $\rightarrow R(\theta, \phi) = sqrt(\Delta \theta^2 + \Delta \phi^2)/$
- N_c nearest charged hadrons \rightarrow Radial distance & Relative Energy Δ E
- N_n nearest neutral hadrons \rightarrow Radial distance & Relative Energy
- 1 nearest electron → Radial distance & Relative Energy

Total =
$$4 + N_{g} + 2N_{c} + 2N_{n} + 1$$

Input Features (Monte Carlo Inbending)

 $R_{n}(\#) \rightarrow$ Angle between nearest "#" neighbor and photon of interest

March 2024 CLAS Collaboration Meeting

12

Model Structure

GBT Output

- ★ For each photon in data and Monte
 Carlo we histogram the GBT output
 value
 - We see that the aggregate outputs are very similar → indicates that the feature spaces are very similar
- ★ Results speaks to our confidence that the predictions made on data <u>can be</u> <u>trusted</u>

Traditional (Left) vs. Machine Learning (Right)

March 2024 CLAS Collaboration Meeting

Figure of Merit (Determining *p* threshold)

March 2024 CLAS Collaboration Meeting

Machine Learning Impact on Yields

- High signal purity without sacrificing signal yield
- ★ Improves upon "traditional" background subtraction methods (stricter minimum photon energy cuts)
 - can be used for other $π^0$ or FD photon studies

★ pass2 ★ Impact on ... SIDIS $\pi^+\pi^0$... Exclusive ϱ^+ , ω

Increased signal purities while maintaining the realistic, physical combinatorial backgrounds

Exclusivity of $\omega \rightarrow \pi^+ \pi^0 \pi^-$

- ★ Channels such as exclusive $ω → π^+ π^0 π^-$ (or exclusive $ρ^+ → π^+ π^0$) have demanding requirements
 - Clean π^0 peak (left figure)
 - $\circ \quad \ \ \text{Clean missing mass peak}$
 - Clean vector meson mass peak
- Photon AI classification streamlines these studies by removing false combinatorial backgrounds!

Photon AI Repository

GitHub Repository

Purpose: Give CLAS12 collaborators access to a pre-trained photon classifier (needs update for *pass2*)

Also can train new models

Potential Integration with Iguana (see C. Dilks' talk)

Contains:

- C++ Hipo file reader w/ cuts
- Code to construct photon neighbors pars. (input for ML)
- Python program to make photon-by-photon predictions
- Example jupyter-notebook
- Readme with instructions

https://github.com/Gregtom3/clas12_photon_classifier

鳌	Gregtom3 Prototype		1f35e3a now 🕚 12 comm
	outroot	Updated usage statement	5 hours a
	pretrained_models	Name edit	1 hour a
	src	Training added	1 hour a
	training_projects	Training projects	1 hour a
۵	EventTree2MLinput.C	Training added	1 hour a
۵	README.md	Update README.md	39 minutes a
۵	buildDiphotons.C	Prototype with files	2 days a
0	classify_hipo.sh	Prototype	no
Ľ	create_training_project.sh	Training added	1 hour a
۵	diphoton_plotter.ipynb	Prototype	no
-	fall2018_rga_inbending_nSidis	Prototype with files	2 days a
÷	fall2018_rga_outbending_nSidis	Prototype with files	2 days ag
C	hipo2tree.C	Prototype	nc
-	mc_rga_inbending	Monte Carlo	2 hours as
	mc_rga_outbending	Monte Carlo	2 hours a
0	predict.py	Training added	1 hour a
0	run_training.sh	Training added	1 hour a
→	spring2019_rga_inbending_nSidis	Prototype with files	2 days a
C	train.py	Training added	1 hour a

Perform Photon Classification on Hipo File

./classifiy_hipo.sh [hipo file] [pretrained_model path] [outdir]

Summary & Outlook

- ★ Forward detector "false photons" being reconstructed in both *pass1* and *pass2* motivate the creation of an AI tool to classify them
 - The GBT model developed leverages nearest neighbor features to classify photons without learning the resonant structure of decays such as the π^0
 - Models are ready to be used by collaborators! <u>https://github.com/Gregtom3/clas12_photon_classifier</u>
 - Integration of the AI shows promising results for several SIDIS, Exclusive channels

