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Staff
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Postdoc
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▪ 8 Researchers: 5 Staff + 3 Postdocs
▪ 4 Researchers from ODU / JLab joint institute
▪ And we keep growing



Data Science at Jefferson Lab
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Mission:
▪ Provide solutions to advance research across the Department of Energy 

complex 

▪ Work with the subject matter experts at Jefferson Lab, partnering 
laboratories, and universities

▪ Provide solutions to scientific applications relevant to the regional scientific 
community

Vision:
▪ Expand the capability and capacity of data science at JLab

▪ Create a collaborative data science research hub to:
1. Work with regional partners on challenging scientific problems

2. Champion education and research opportunities with regional universities and 
industry

3. Reduce the carbon footprint by optimizing the data science workflow and 
algorithms
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Building Collaborations
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The Jefferson Lab Data Science Pillars
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Applications

Methods & Algorithms

Infrastructure

▪ Nuclear Physics (NP), High Energy Physics (HEP), 
Advanced Scientific Computing Research (ASCR), 
Basic Energy Sciences (BES)

▪ Health & Climate

▪ AI based optimization & Controls
▪ Explainability and Robustness
▪ Generative AI
▪ Scalable AI

▪ JLab Data Science Composable Workflow
▪ JLab ML & Data Hub
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The Jefferson Lab Data Science Pillars
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Applications

Methods & Algorithms

Infrastructure

▪ Nuclear Physics (NP), High Energy Physics (HEP), 
Advanced Scientific Computing Research (ASCR), 
Basic Energy Sciences (BES)

▪ Health & Climate

▪ AI based optimization & Controls
▪ Explainability and Robustness
▪ Generative AI
▪ Scalable AI

▪ JLab Data Science Composable Workflow
▪ JLab ML & Data Hub

Today's Focus
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Explainability and Robustness (1)

Tool Developed Project Collaborator

Uncertainty Quantification Errant Beam SNS w/ ORNL

Uncertainty Quantification Data driven surrogate models FNAL Booster

Uncertainty Quantification Data driven regression for 

HVCM degradation capacitor 
models

SNS w/ ORNL

Loss Landscape Conditional VAE models SNS w. ORNL

Uncertainty Quantification Norfolk flood surrogate models ODU
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Explainability and Robustness (2)

Long-Term 

Capabilities 

(5-10 yrs)

Mid-Term Core 

Capabilities

(2-4 yrs) 

Mature and 

Deployable

Capacities

(1yrs-now) 

Capability & Readiness

▪ Mature & Deployable: Integrated in majority of projects; Validation and 
migration of new algorithms into framework is ongoing

▪ Mid-Term: Working on new algorithms to handle boundary condition and 
scaling

▪ Long-Term: Working on understanding uncertainty quantification in 
generative AI

CLAS Collaboration Meeting March 2024



8

Uncertainty Quantification

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

Example: Mean Squared Error

==> Gives an idea how good / bad the model performs on the entire data set

CLAS Collaboration Meeting March 2024

A single model, without specific modifications, has no uncertainty!
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Uncertainty Quantification

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

Common Techniques (just 2 out of many techniques)

1.) Ensemble: M models, independently trained on same data, but different initialization for 
internal parameters

CLAS Collaboration Meeting March 2024

A single model, without specific modifications, has no uncertainty!
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Uncertainty Quantification

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, …
▪ Deduced from data with known truth (or something close to it)
▪ No applicable to single prediction

2.) Deep Gaussian Process Approximation (DGPA): Approximate kernel k(x,y) to 
reduce computational cost. Model directly predicts uncertainty.
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Common Techniques (just 2 out of many techniques)

Allows to formulate 
uncertainties
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Generative AI (1)

Tool Developed Project Collaborator

Anomaly detection and data 

generation

Errant Beam SNS w/ ORNL

Anomaly detection and data 

generation

Analysis of ultrasound images EVMS & ODU

Data driven parameter 

generation

Event-level analysis of deep 

inelastic scattering 
experiments

ANL / ODU / VTECH

Scientific generative AI Event-level analysis of 

photoproduction data in CLAS

Hall B

Original Generated
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Generative AI (2)

Long-Term 

Capabilities 

(5-10 yrs)

Mid-Term Core 

Capabilities

(2-4 yrs) 

Mature and 

Deployable

Capacities

(1yrs-now) 

Capability & Readiness

▪ Mature & Deployable: Basic techniques such as GAN, VAE available

▪ Mid-Term: Composable workflow for scientific generative AI

▪ Long-Term: Scalable, composable workflow for scientific generative I
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Generative AI in a Nutshell

Generative Adversarial

Network (GAN)

Variational Autoencoder

(VAE)

Diffusion Model

Anomaly

Detection

Data

Generation

Training

Difficulty

Image Quality &

Diversity
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Generative Adverserial Networks (GANs)
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▪ Successfully utilized in multiple projects
▪ Always used in combination with diagnostic tools (e.g. gradient monitor, loss 

landscape,…)



What is a Workflow and why should I use one?
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▪ Workflow: Chain of independent modules
▪ Common denominator for every analysis
▪ Replace / swap out modules, depending on analysis
▪ Key features

• Work on modules independently --> Support collaborative efforts
• Each module comes with a unit-test --> Easy debugging
• Reproducibility and efficiency --> Everything runs from a configuration file
• Profit from multiple ML / DL frameworks
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The Generative Inverse Problem Solver: GIPS
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▪ Developed within the SciDAC QuantOM project
▪ Event-level toolkit for deep inelastic scattering data
▪ 3D imaging of the proton



The Generative Inverse Problem Solver: GIPS
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The Generative Inverse Problem Solver: GIPS
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Iteration 0

Parameters p Can not directly compare



The Generative Inverse Problem Solver: GIPS
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• Convert parameters to 

parton density functions 
(PDFs)

• Include higher order and 

radiate corrections
• Sample events from PDFs 

(e.g. via MCMC)

Iteration 0

Parameters p



The Generative Inverse Problem Solver: GIPS
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Iteration 0

Parameters p

• Apply experimental 

effects (e.g. resolution, 

acceptance)

• Handle background 

contributions

• Use surrogate for 

detector



The Generative Inverse Problem Solver: GIPS
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Iteration 0

Parameters p

• Exclude un-physical 

data points

• Match experimental 

and synthetic data



The Generative Inverse Problem Solver: GIPS
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Iteration 100

Parameters p

• Run workflow iteratively

• Use objective score to 

update optimizer



What is Scaling and do I need it?
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Data Format Model Complexity

(Number of trainable Parameters)

Digits ~1k - 100k

Images & Videos ~100k - 10000k

Text & Language >> 10000k

▪ Depending on the model complexity, a 
single GPU is not suitable for training 
(Unless you are fine waiting months for 
your publication results)

▪ To speed up training time: Run your 
analysis across multiple GPUs

▪ Scaling: Total training time / Model 
performance vs. Number of GPUs

• Example on the left: MNIST Classifier 
trained on JLab GPUs, training times 
nearly identical for all runs
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Basic Distributed Training Strategies
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Training Method Explanation

Data Parallel Shard data across GPUs, each GPU sees full 

model --> Distribute gradients

Model Parallel Shard model across GPUs, each GPU sees 

fraction of the model and full data

Pipeline Parallel Combine the above two

Data Parallel + Shard model Mainly data parallel, but each GPU operates 

only on subsection of model (implementation 

NOT the same as pipeline parallel)
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Distributed Training of Machine and Deep Learning Models
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▪ Applicability: Can I do it?
▪ Necessity: Do I have to do it?
▪ Plot below is inspired by 

NeurIPS 2023 conference
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Scaling an entire Workflow
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▪ Run QuantOM workflow on Polaris machine @ 
Argonne

▪ Utilize multiple GPUs to enhance analyzing 
power

▪ Test different methods for scaling the 
workflow

▪ Publication of current results in progress



Charged Particle Tracking in Hall D
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Raw Data (Hits) Hitgraph

GNN
Model

▪ Graph Neural Network (GNN) process raw detector hits
▪ Observe ~10 speed up compared to conventional method
▪ Deploy model of FPGAs



Generative Modeling Analysis in Hall B

20CLAS Collaboration Meeting March 2024

Plot taken from: Clas12 collab., Phys. Rev. D, 108, 094030 (2023)

▪ R & D already done by Y. Alanzi et al.
▪ Our contribution(s): 

• Implement existing code into generic, composable workflow
• Add uncertainty quantification for GAN(s)
• Provide scaling capability



Let's Collaborate!
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Jefferson Labs 
Research Mission

Experimental 
Halls

Data Science 
Department

• Expert knowledge (e.g. detectors, 
data formats, analyses,…)

• Interesting uses-cases (e.g. 
event-level fitting, tracking,…)

• Existing ML & DL tools

• Algorithmic Tools & Methods (e.g. 
uncertainty quantification, hyper 
parameter tuning,continuois learning...)

• Infrastructure for running scalable and 
robust workflows

• Experience and knowledge outside 
Nuclear Physics



Please feel free to reach out
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▪ Reached out to experimental hall leaders to initiate discussion(s) 
(I need to follow up on this)

▪ If you have questions, concerns, suggestions, please contact me: 
dlersch@jlab.org
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