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The Team

= 8 Researchers: 5 Staff + 3 Postdocs
= 4 Researchers from ODU / JLab joint institute
= And we keep growing

MalachiSchram
Department Head

G

Kishansingh Rajput Diana McSpadden Armen Kasparian Daniel Lersch
Staff Staff Staff Staff

Steven Goldenberg Ahmed Mohammed Zhenyu Dai
Postdoc Postdoc Postdoc
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Data Science at Jefferson Lab

Mission:

= Provide solutions to advance research across the Department of Energy
complex

= Work with the subject matter experts at Jefferson Lab, partnering
laboratories, and universities

= Provide solutions to scientific applications relevant to the regional scientific
community

Vision:
= Expand the capability and capacity of data science at JLab
=  Create a collaborative data science research hub to:

1. Work with regional partners on challengingscientific problems

2. Championeducationand research opportunities with regional universities and
industry

3. Reduce the carbon footprint by optimizing the data science workflow and
algorithms
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Building Collaborations
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The Jefferson Lab Data Science Pillars

= Nuclear Physics (NP), High Energy Physics (HEP),
Advanced Scientific Computing Research (ASCR),
Basic Energy Sciences (BES)

= Health & Climate

= Al based optimization & Controls
= Explainability and Robustness

= Generative Al

= Scalable Al

JLab Data Science Composable Workflow
JLab ML & Data Hub
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The Jefferson Lab Data Science Pillars

= Nuclear Physics (NP), High Energy Physics (HEP),
Advanced Scientific Computing Research (ASCR), Applications
Basic Energy Sciences (BES)
= Health & Climate

Today's Focus

= Al based optimization & Controls
Explainability and Robustness Methods & Algorithms
Generative Al
Scalable Al

JLab Data Science Composable Workflow
JLab ML & Data Hub Infrastructure
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Explainability and Robustness (1)

Tool Developed Project Collaborator
Uncertainty Quantification Errant Beam SNS w/ ORNL

Uncertainty Quantification Data driven surrogate models FNAL Booster

Uncertainty Quantification Data driven regressionfor SNS w/ ORNL
HVCM degradation capacitor
models

Loss Landscape Conditional VAE models SNS w. ORNL

Uncertainty Quantification Norfolk flood surrogate models ODU
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Explainability and Robustness (2)

-

\

\
Long-Term
Capabilities
(5-10 yrs)
/

Capability & Readiness

= Mature & Deployable: Integrated in majority of projects; Validation and

migration of new algorithms into framework is ongoing

= Mid-Term: Working on new algorithms to handle boundary condition and
scaling

» Long-Term: Working on understanding uncertainty quantification in
generative Al

CLAS Collaboration Meeting March 2024

Jefferson Lab



Uncertainty Quantification

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, ...
= Deduced from data with known truth (or something close to it)
= No applicable to single prediction

Example: Mean Squared Error
N

MSE= % > (y; — 9:)?, y; : Known truth for z;, 9; =model(x;)
i=1

==> Gives an idea how good / bad the model performs on the entire data set

~

y; =model(z;) holds NO information about uncertainty of g;
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Uncertainty Quantification

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, ...
= Deduced from data with known truth (or something close to it)
= No applicable to single prediction

Common Techniques (just 2 out of many techniques)

1.) Ensemble: M models, independently trained on same data, but different initialization for
internal parameters

® GAN Ensemble

M
Ui = % > modelg(z;)
k=1

Parameter Residuals 1
o
o

M _
oO; = \/]\1/[ Z (modelk(asi) — Qz)z 0.2

k=1

0 10000 20000 30000 40000 50000
Epoch
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Uncertainty Quantification

A single model, without specific modifications, has no uncertainty!

What is often quoted: mean squared error, confusion matrix,.. ROC-Curve, ...
= Deduced from data with known truth (or something close to it)
= No applicable to single prediction

Common Techniques (just 2 out of many techniques)

2.) Deep Gaussian Process Approximation (DGPA): Approximate kernel k(x,y) to
reduce computational cost. Model directly predicts uncertainty.

Allows to formulate
uncertainties

E(x, y)l~ 2" (2)z(y)

Exact RBF kernel 2Z",R=1 ZZ',R=10 ZZ',R=100 ZZ',R=1000
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Generative Al (1)

Tool Developed Project Collaborator

Anomaly detectionand data Errant Beam SNS w/ ORNL
generation

Anomaly detectionand data  Analysis of ultrasound images EVMS & ODU
generation

Data driven parameter Event-level analysis of deep ANL / ODU/ VTECH
generation inelastic scattering
experiments

Scientific generative Al Event-level analysis of
photoproductiondata in CLAS

Original Generated
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Generative Al (2)

-

\

\
Long-Term
Capabilities
(5-10 yrs)
/

Capability & Readiness

» Mature & Deployable: Basic techniques such as GAN, VAE available

= Mid-Term: Composable workflow for scientific generative Al

* Long-Term: Scalable, composable workflow for scientific generative |
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Generative Al in a Nutshell

- Generative Al

PR N mm e ——— —
L R ——

or others...

\-----—

Anomaly Data Training Image Quality &
Detection Generation Difficulty Diversity

. . ; { )
st () A KKK
Variational Autoencoder J J ' l ‘ * * *

(VAE)

Diffusion Model J « ' ,/‘ * * * * *
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Generative Adverserial Networks (GANS)

Discriminator irainin@
r _____
Input noise Generated data (z) :

Classification
Score

Y Generator __ 4 Discriminator
(G) (D)

Generator training

D and G plays two player minimax game where G tries to
minimize below equation while D tries to maximize it

Ey[log(D(x))] + E,log(1-D(G(2)))]
Real/Training data (x)

= Successfully utilized in multiple projects
= Always used in combination with diagnostic tools (e.g. gradient monitor, loss

landscape,...)
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What is a Workflow and why should | use one?

Data Ingestion Data Processing Model Training Analysis

* Workflow: Chain of independent modules

= Common denominator for every analysis

= Replace / swap out modules, depending on analysis
= Key features

*  Work on modules independently --> Support collaborative efforts
* Each module comes with a unit-test --> Easy debugging

* Reproducibility and efficiency --> Everything runs from a configuration file
* Profit from multiple ML / DL frameworks

1 TensorFlow Keras '
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The Generative Inverse Problem Solver: GIPS

Parameters

Theory

Sampler

Optimizer
JuaWuoIIAU]
uondun4 aARRIqo

Experiment

Event Filter

Objective Score

= Developed within the SciDAC QuantOM project
= Event-level toolkit for deep inelastic scattering data
= 3D imaging of the proton
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The Generative Inverse Problem Solver: GIPS

Parameters
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The Generative Inverse Problem Solver: GIPS

Parameters

Theory

Sampler
Experiment
: Jefferson Lab
Event Filter ® Thomas Jefferson National Accelerator Facility
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The Generative Inverse Problem Solver: GIPS

Parameters
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Event Filter

« Convert parameters to
parton density functions
(PDFs)

* Include higher orderand
radiate corrections

« Sample events from PDFs
(e.g.via MCMC)
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The Generative Inverse Problem Solver: GIPS

Parameters

Theory

Sampler
Experiment
: Jefferson Lab
Event Filter ® Thomas Jefferson National Accelerator Facility

Optimizer
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The Generative Inverse Problem Solver: GIPS

Parameters

Theory

Sampler
Experiment
— Jefferson Lab
Event Filter ®Thomas Jefferson National Accelerator Facility
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The Generative Inverse Problem Solver: GIPS

Parameters

Theory

Sampler
Experiment
_— Jefferson Lab
Event Filter ®Thomas Jefferson National Accelerator Facility
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What is Scaling and do | need it?

Data Format Model Complexity
(Number of trainable Parameters)

Digits ~1k - 100k

Images & Videos ~100k - 10000k
Text & Language >> 10000k

L0 WWL -0 P"" = Depending on the model complexity, a
. m . F single GPU is not suitable for training
o r | r (Unless you are fine waiting months for

§ . %06 your publication results)
S J § /} = To speed up training time: Run your
g 0al = o4l analysis across multiple GPUs
f = j = Scaling: Total training time / Model
0.2 0.2 performance vs. Number of GPUs
— Jiworkers)=1 — Muworkers=1 | o Example on the left: MNIST Classifier
0.0 N(workers)=3 | 0.0 nworkersi=3 | trained on JLab GPUs, training times
0 50 100 0 50 100 nearly identical for all runs
Epoch Epoch _
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Basic Distributed Training Strategies

Training Method Explanation

Data Parallel Shard data across GPUs, each GPU sees full
model --> Distribute gradients

Model Parallel Shard model across GPUs, each GPU sees
fraction of the model and full data

e

Combine Components

t 3
> =]

Entire Data GPU Entire Model GPU 2
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Distributed Training of Machine and Deep Learning Models

= Applicability: Can 1 do it?
= Necessity: Dol have to doit?
= Plot below is inspired by
of non-serialized, NeurlPS 2023 conference

multi-GPU training methods

(Applicability * Necessity)

Ensemble Methods

e | ) leann

parallel training
—> off the shelf tools,

e.g. horovod, PyTorch

Custom tools /methods " __________ i
Sl b : Model Complexity
partial gradient computation BDT, BO, MLP... © CNN, VAE, GAN, : Inception v3, deepl,
& backprop " RL = language models
—> Pytorch FSDP . s . Dy
n— ——p i ~ »
ML DL
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Scaling an entire Workflow

_ 1007 ——— single Rank » Run QuantOM workflow on Polaris machine @
N HEEE Conventional ARAR
= 801 I ARAR with grouping i Argonne
2 7 mEm RMA-ARAR with grouping II = Utilize multiple GPUs to enhance analyzing
(@]
5ol power
m . .
e 'I II = Test different methods for scalingthe
U]
£ n workflow
5 II II II II = Publicationof current results in progress
g 20
Q
4 8 28

20

Parameters

Theory

Sampler

m
P 3
[ <
B 3
£ S
8 3
o 3

-

uofpuN4 3ARRIqO

Experiment

Event Filter

Objective Score
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Charged Particle Tracking in Hall D

Hitgraph

= Graph Neural Network (GNN) process raw detector hits
= QObserve ~10 speed up compared to conventional method
= Deploy model of FPGAs

driver

Raw data < Edge
Classifier-vO

Uses: Edge scores, and
Node network-vO

Hit-graph

Builder-vO Evaluation Plots

Edge network-vO « ROC

4 e Purity-Efficiency
* Prediction distribution

v
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Generative Modeling Analysis in Hall B

GEN RE-MC

] GEN events

)

UNF-GAN Generator

synthetic GEN
events

1

o
GEANT REC events
(Detector simulation) }

/ \ " g "EREN

I ¢ \
c I [
e 1 I
O 5 1 I
o '?;: 1 * I
ZLLI | |
o) :[Generator }:

| !
) N, A

Plot taken from: Clas12 collab.,Phys.Rev.D, 108,094030(2023)

= R & D already done by Y. Alanzi et al.

= Qur contribution(s):

4
[Discriminator J
|' ‘I synthetic REC T
1 DS-GAN events
D1 i
, Generator :
' /

back propagation
Hall_B/AIDAPT/

}— data_parsers/

| — __init__.py

| L— aidapt_numpy_reader_v@.py
}— data_prep/

Implement existing code into generic, composable workflow
Add uncertainty quantification for GAN(s)

Provide scaling capability
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— __init__.py

— lab_variables_to_invariants.py

— numpy_minmax_scaler.py
L— numpy_standard_scaler.py
odels/

— __init__.py

L— tf_mlp_gan_v@.py

utils/

— config_utils.py
L— math_utils.py
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Let's Collaborate!

Jefferson Labs

Research Mission

Data Science Experimental
Department Halls
* Algorithmic Tools & Methods (e.g. * Expert knowledge (e.g. detectors,
uncertainty quantification, hyper data formats, analyses,...)
parameter tuning,continuoislearning...) * Interesting uses-cases (e.g.
* Infrastructure for runningscalable and event-level fitting, tracking,...)
robust workflows e Existing ML & DL tools

e Experience and knowledge outside
Nuclear Physics
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Please feel free to reach out

= Reached out to experimental hall leaders to initiate discussion(s)
(I need to follow up on this)

= |f you have questions, concerns, suggestions, please contact me:
dlersch@jlab.org
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