Beam Spin Asymmetry of Exclusive η Electroproduction at CLAS12

I. ILLARI George Washington University 14 March 2024

> THE GEORGE WASHINGTON UNIVERSITY

CLAS Collaboration Meeting March 2024

WASHINGTON, DC

Happy Pi Day!

DALLE3

SDXL 1.0

Motivation

- Why study η electroproduction?
- η acts as "isospin filter":

• Access nucleon resonances I = $\frac{1}{2}$

- Current world database:
 Nπ final states
- Extend measurements beyond S11(1535)
 - Beam spin asymmetry for η electroproduction has not been studied for W in 1.6-2 GeV region before

Particle	J^P	Overall	$N\gamma$	$N\pi$	$N\eta$
N(1440)	$1/2^{+}$	****	****	****	
N(1520)	$3/2^{-}$	****	****	****	****
N(1535)	$1/2^{-}$	****	****	****	****
N(1650)	$1/2^{-}$	****	****	****	****
N(1675)	$5/2^{-}$	****	****	****	*
N(1680)	$5/2^{+}$	****	****	****	*
N(1700)	$3/2^{-}$	***	**	***	*
N(1710)	$1/2^{+}$	****	****	****	***
N(1720)	$3/2^{+}$	****	****	****	*
N(1860)	$5/2^{+}$	**	*	**	*
N(1875)	$3/2^{-}$	***	**	**	*
N(1880)	$1/2^{+}$	***	**	*	*
N(1895)	$1/2^{-}$	****	****	*	****

**** Existence is certain.

*** Existence is very likely.

- ** Evidence of existence is fair.
- * Evidence of existence is poor.

Particle	J^P	Fraction Γ_i/Γ for Decay Modes	
		$N\pi$	$N\eta$
N(1710)	$1/2^{+}$	5-20 %	10-50 %
N(1895)	$1/2^{-}$	2-18 %	15-45 %

Tables modified from PDG

Beam Spin Asymmetry (BSA)

- Beam Spin Asymmetry: $BSA = \frac{1}{P_b} \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$ $= \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-}$
- Sin φ^* Moment: BSA $\approx A_{LU}^{\sin \phi^*} \sin \phi^*$ $A_{LU}^{\sin \phi^*} = \sqrt{2\epsilon(1-\epsilon)} \left(\frac{\sigma_{LT'}}{\sigma_T + \epsilon \sigma_L}\right)$
- $N^{\pm} = \eta$ signal yield for (±1) helicity
- P_b = beam polarization (0.8517)

- Objective:
- Measure Beam Spin Asymmetry (BSA) and sin moment $A_{LU}{}^{sin\phi^*}$ in η electroproduction
 - Focus on the nucleon resonance region (1.6 < W < 2 GeV)
- Outline of this talk:
 - Discuss the dataset and event selection
 - Outline the kinematics and the kinematic binning procedure
 - Describe the signal extraction and background fitting methods
 - $\circ~$ Present the BSA and $A_{LU}{}^{sin\phi^*}$ results across various kinematic bins
 - Illustration of how our findings compare with current theoretical models

Dataset

- RGK Winter 2018
- Beam energy: 6.5 GeV
- Polarized electron beam
- Unpolarized LH₂ target
- Outbending electrons
- Luminosity: 10^{35} cm⁻²s⁻¹
- Beam current: 60 nA
- Collected events: 7.8G

• Reaction channel:

o ep→e'p'η

- η identified via missing mass squared technique
- Electron and proton in Forward Detector
- Cuts:
 - \circ W < 2 GeV
 - Nucleon resonance region
 - $\circ 0.15 \text{ GeV}^2 < MM^2 < 0.45 \text{ GeV}^2$
 - η peak around 0.3 GeV²
 - Standard RGK analysis & fiducial cuts as outline by Analysis Note
- Version: pass2

Kinematic Parameters

H. Denizli et al., "Q² dependence of the S11(1535) photocoupling and evidence for a P-wave resonance in η electroproduction", Physical Review C 76 (2007).

I. ILLARI

UNIVERSITY WASHINGTON, DC

THE GEORGE

WASHINGTON

9

Kinematic Binning proton in FD

W [GeV]	φ* [deg]	Q ² [GeV2]	cos(θ*)
1.610 to 1.635	0 to 38	0.300 to 0.521	-1.0 to -0.5
1.635 to 1.660	38 to 68	0.521 to 0.896	-0.5 to 0.0
1.660 to 1.685	68 to 91	0.896 to 1.850	0.0 to 0.5
1.685 to 1.710	91 to 115	1.850 to 5.671	0.5 to 1.0
1.710 to 1.735	115 to 180		
1.735 to 1.760	180 to 246		
1.760 to 1.785	246 to 269		
1.785 to 1.810	269 to 294		
1.810 to 1.860	294 to 324		
1.860 to 1.910	324 to 360		
1.910 to 1.960			
1.960 to 2.010			
2.010 to 2.110			
2.110 to 2.210			

Kinematic Binning: Stepwise Methodology

I. ILLARI

10

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Signal Extraction and Background Fit

pol3 as "benchmark"

- Gaussian Signal
- Polynomial Background
- Total Distribution
- Use polynomial functions of various orders to fit the background shape
- Systematic uncertainty due to the choice of background

Bins in W: BSA

THE GEORGE WASHINGTON UNIVERSITY

Bins in W: A_{LU}^{sinφ*}

- Data binned over W and ϕ^*
- Data integrated over Q^2 and $\cos\theta^*$
- Error bars: statistical uncertainty
- Grey histograms around zero line: systematic uncertainty

CLAS Collaboration Meeting March 2024

 $\sin \phi *$

 $BSA \approx A_{LU}^{\sin \phi *}$

Bins in W and Q²: A_{LU}^{sinφ*}

Increasing Q² bins

- Data binned over W, ϕ^* , and Q^2
- Data integrated over cosθ*
- Error bars: statistical uncertainty
- Grey histograms around zero line: systematic uncertainty

$$BSA \approx A_{LU}^{\sin \phi *} \sin \phi *$$

Bins in W, Q², and cos\theta^*: $A_{LU}^{sin\phi^*}$

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Increasing Q² bins

I. ILLARI

CLAS Collaboration Meeting March 2024

15

Illustrative Example with Theoretical Models

- Data binned over W, ϕ^* , and Q^2 and integrated over $\cos\theta^*$
- Jülich-Bonn-Washington (JBW)
- EtaMAID

- Illustrative example of the potential for this data to constrain and improve theoretical models
- Limitations in the models (small Nη datasets, lack of polarization observables) prevent definitive conclusions at this stage

• Key Findings:

Summary

- $\circ \quad \mbox{Consistently negative } A_{LU}{}^{sin\phi^*} \ \ values \ across \ the \ W \ range$
- Dip-like structure near N(1710)
- Cusp-like behavior near N(1895)
- Impact
 - Expands kinematic reach in η electroproduction BSA measurements
 - Bridges the gap between wellstudied S11(1535) and higher mass states
 - Provides new data to evaluate and constrain theoretical models

Binned over W and ϕ^* , Integrated over Q² and $\cos\theta^*$

EXTRA SLIDES

 \bullet \bullet \bullet

Motivation

- Why study η electroproduction?
- η acts as "isospin filter":
- access nucleon resonances $I = \frac{1}{2}$
- Current world database:
- $N\pi$ final states

Particle	J^P	Overall	$N\gamma$	$N\pi$	$N\eta$
N(1440)	$1/2^{+}$	****	****	****	
N(1520)	$3/2^{-}$	****	****	****	****
N(1535)	$1/2^{-}$	****	****	****	****
N(1650)	$1/2^{-}$	****	****	****	****
N(1675)	$5/2^{-}$	****	****	****	*
N(1680)	$5/2^{+}$	****	****	****	*
N(1700)	$3/2^{-}$	***	**	***	*
N(1710)	$1/2^{+}$	****	****	****	***
N(1720)	$3/2^{+}$	****	****	****	*
N(1860)	$5/2^{+}$	**	*	**	*
N(1875)	$3/2^{-}$	***	**	**	*
N(1880)	$1/2^{+}$	***	**	*	*
N(1895)	$1/2^{-}$	****	****	*	****

Particle	J^P	Fraction Γ_i/Γ for Decay Modes	
		$N\pi$	$N\eta$
N(1440)	$1/2^+$	55-75 %	<1 %
N(1520)	$3/2^{-}$	55-65 %	0.07-0.09 %
N(1535)	$1/2^{-}$	32-52%	30-55 %
N(1650)	$1/2^{-}$	50-70 %	15-35~%
N(1675)	$5/2^{-}$	38-42%	<1 %
N(1680)	$5/2^+$	60-70 %	<1 %
N(1700)	$3/2^{-}$	7-17 %	1-2 %
N(1710)	$1/2^+$	5-20 %	10-50~%
N(1720)	$3/2^{+}$	8-14 %	1-5 %
N(1875)	$3/2^{-}$	3-11 %	3-16 %
N(1880)	$1/2^{+}$	3-31 %	1-55 %
N(1895)	$1/2^{-}$	2-18 %	15-45 %
N(1900)	$3/2^{+}$	1-20 %	2-14 %
N(2060)	$5/2^{-}$	7-12~%	2-38 %
N(2100)	$1/2^+$	8-32 %	5-45 %
N(2120)	$3/2^{-}$	5-15 %	1-5 %
N(2190)	$7/2^{-}$	10-20 %	1-5 %
N(2220)	$9/2^{-}$	15-30 %	N/A

Tables modified from PDG

Experiments

- E12-16-010
 - A Search for Hybrid Baryons in Hall B with CLAS12
 - o Annalisa D'Angelo
- E12-16-010
 - A Nucleon Resonance Structure Studies Via Exclusive KY Electroproduction at 6.6 GeV and 8.8 GeV
 - o Daniel Carman
- E12-16-010B
 - Deeply Virtual Compton Scattering with CLAS12 at 6.6 GeV and 8.8 GeV
 - o Latifa Elouadrhiri

Data Status

- 4.0 PAC days
- Eb = 6.5 GeV
- Target: LH2
- Beam current: 60 nA
- Trigger: e in CLAS
- Luminosity: 1035 cm⁻²s⁻¹ @ 6.5 GeV (Full Luminosity)
- Collected Events: 7.8G
- Torus Current: 100% (3375 A) (negative outbending)
- Solenoid -100%
- Polarized e, unpolarized LH2
- Target Center: x,y = 0cm, z = -3cm

A. D'Angelo, *Run Group K - Confinement and Strong QCD PASS2 Calibration Readiness Review*, Apr. 2022.

What are we measuring? Spin Observables

Experiment

• Beam Spin Asymmetry:

$$BSA = \frac{1}{P_b} \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \\ = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-}$$

• Sin φ^* Moment:

$$BSA = \frac{A_{LU}^{\sin \phi^*} \sin \phi^*}{1 + A_{UU}^{\cos \phi^*} \cos \phi^* + A_{UU}^{\cos 2\phi^*} \cos 2\phi^*} \approx A_{LU}^{\sin \phi^*} \sin \phi^*$$

 N^{\pm} = signal yield for ±helicity P_b = beam polarization (85.17%)

Theorists

• Structure Function:

$$\frac{1}{N_{0}}\sigma_{0} = \sigma_{T} + \epsilon \sigma_{L} + \epsilon \cos 2\phi_{h}\sigma_{TT}$$

$$+ \sqrt{\epsilon(1+\epsilon)/2}\cos\phi_{h}\sigma_{LT} + h_{e}\sqrt{\epsilon(1-\epsilon)/2}\sin\phi_{h}\sigma'_{LT}$$

$$N_{0} = \frac{W^{2} - M^{2}}{2S^{2}Q^{2}(1-\epsilon)}$$
• Beam Spin Asymmetry:

$$BSA = \frac{1}{P_{b}} \times \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$$

$$= \frac{1}{P_{b}} \times \frac{\sqrt{2\epsilon(1-\epsilon)}\sin(\phi*)\sigma'_{LT}}{2\left(\sigma_{T} + \epsilon\sigma_{L} + \sqrt{\epsilon(1+\epsilon)/2}\cos\phi_{h}\sigma_{LT} + \epsilon\cos 2\phi_{h}\sigma_{TT}\right)}$$

• Sin φ* Moment:

$$A_{LU}^{\sin\phi^*} = \sqrt{2\epsilon(1-\epsilon)} \frac{\sigma_{LT'}}{\sigma_T + \epsilon\sigma_L}$$

$$\epsilon = \left[1 + 2\left(1 + \frac{\nu^2}{Q^2}\right)\tan^2\frac{\theta_e}{2}\right]^{-1}$$

 $\nu = E_e - E_{e'}$

A. Afanasev, I. Akushevich, V. Burkert, and K. Joo, "QED radiative CLAS Collaboration Meeting" March 2024

Update

21

Count | % Retained

Extracting $\eta \rightarrow$ Event Selection Criteria (e and p)

• Cuts applied to run 5893

Before cuts applied

Particle Type	Location	Count
Electrons	FD	454544
	FD+CD	196189
Protons	FD	59409
	CD	136780

After cuts applied

Particle Type | Detector

Electrons	FD	PCAL Fiducial Cuts	454105	99.90%	
		DC Fiducial Cuts	431126	94.85%	
		chi2pid	451472	99.32%	
		momentum	452852	99.63%	
		z-vertex	401289	88.28%	
			ECAL π contamination	444680	97.83%

Details of each electron cut

Cut

Description	Number	Percentage
Total final states before cuts	515269	100%
Final states after all cuts	141739	27.51%
Final states after all cuts with proton in FD	76298	53.83%
Final states after all cuts with proton in CD	65441	46.17%

Details of each proton cut

- Analysis cuts: refining particle identification and enhancing sample purity
- Fiducial cuts: define the operational boundaries of the detectors

Particle Type	Detector	Cut	Count	% Retained
	FD	DC Fiducial Cuts	59543	30.35%
	FD	beta	58869	99.09%
		momentum	59016	99.34%
	CD	beta	136780	100.00%
Protons		momentum	136780	100.00%
		chi2pid	187127	95.38%
	FD+CD	z-vertex	185806	94.71%
		beta	195649	99.72%
		momentum	195796	99.8%

Update

PCAL

FX developed PCAL Fiducial Cuts for RGK Analysis Note

Algorithm 1: ECAL Fiducial cuts procedure

Result: boolean is true if position inside fiducial cuts

res \leftarrow false : return value of algorithm;

 $cX \leftarrow PCAL X$ coordinate of cluster from REC::Calorimeter hipo bank;

 $cY \leftarrow PCAL Y$ coordinate of cluster from REC::Calorimeter hipo bank;

 $S \leftarrow$ sector number:

 $\text{if } cX > p_{split} \ \text{ and } \ cY < s_{left} \times (cX - t_{left}) \ \text{ and } \ cY > s_{right} \times (cX - t_{right}) \ \text{then} \\ \\$ res \leftarrow true;

 $\textbf{else if } cX < p_{split} \ \textbf{and} \ cY < q_{left} \times (cX - r_{left}) \ \textbf{and} \ cY > q_{right} \times (cX - r_{right}) \ \textbf{then}$ res \leftarrow true;

sector	1	2	3	4	5	6
$\mathbf{p}_{\mathrm{split}}$	87	82	85	77	78	82
t_{left}	58.7356	62.8204	62.2296	53.7756	58.2888	54.5822
t_{right}	58.7477	51.2589	59.2357	56.2415	60.8219	49.8914
$\mathbf{s}_{\mathrm{left}}$	0.582053	0.544976	0.549788	0.56899	0.56414	0.57343
$\mathbf{s}_{\mathrm{right}}$	-0.591876	-0.562926	-0.562246	-0.563726	-0.568902	-0.550729
$r_{ m left}$	64.9348	64.7541	67.832	55.9324	55.9225	60.0997
$ m r_{right}$	65.424	54.6992	63.6628	57.8931	56.5367	56.4641
$\mathbf{q}_{\mathrm{left}}$	0.745578	0.606081	0.729202	0.627239	0.503674	0.717899
${ m q_{right}}$	-0.775022	-0.633863	-0.678901	-0.612458	-0.455319	-0.692481

Table 9: ECAL fiducial cut parameters

Developed using weight of average sampling fraction < Etot / p >

March 2024

		h-		h+
	$y \leq$	$0.556 \cdot x - 6.878$	$y \leq$	$0.610\cdot x - 12.720$
R1	$y \ge 1$	$-0.560 \cdot x + 7.482$	$y \ge$	$-0.604 \cdot x + 12.159$
	$x \ge$	24.052	$x \ge$	38.02
	$y \leq$	$0.578\cdot x - 13.898$	$y \leq$	$0.573 \cdot x - 13.949$
R2	$ y \ge$	$-0.577 \cdot x + 14.851$	$y \ge 1$	$-0.569 \cdot x + 13.891$
	$x \ge$	39.705	$x \ge$	54.88
	$y \leq$	$0.591 \cdot x - 27.459$	$y \leq$	$0.527\cdot x - 11.998$
R3	$ y \ge$	$-0.588 \cdot x + 26.912$	$y \ge 1$	$-0.530 \cdot x + 13.372$
	$x \ge 1$	77.755	$x \ge$	49.0

- The plots show events inside and outside of fiducial volume
- Left: positively charged particles
- Right: negatively charged particles

RGK Analysis Note

- Charged hadron & electron fiducial cuts in FD using reconstructed (x, y) point of trajectory in DC
- R1 (layer 6), R2 (layer 18), and R3 (layer 36)
- Uses fiducial cuts algorithm developed by Stefan Diehl for RG-A analysis

CLAS Collaboration Meeting

March 2024

Update

24

THE GEORGE

WASHINGTON

WASHINGTON, DC

 $i = \pi/K/p/d...$

For hadrons: "...quality factory based off of the

difference of the vertex times and the expected

layer and component." (Newton 2021)

 $\Delta t_i = t_0 - \left| t_{\rm FTOF} - \frac{-}{\beta_i(p)} \right|$

timing resolution, which is dependent on the FTOF

chi2pid

- For electrons/positrons: "The electron 'chi2pid' value...is an event builder quality factor that quantifies how closely the expected and calculated sampling fractions are, as shown by the formula below where σ_p is the resolution of the sampling fraction," (Newton 2021)
- $\chi^2 = \frac{\mathrm{SF}_{\mathrm{meas}}(E) \mathrm{SF}_{\mathrm{calc}}(E)}{\mathrm{SF}_{\mathrm{calc}}(E)}$ $\begin{array}{c} \frac{h \text{ proton_chi2pid}}{Entries & 13799} \beta_i(p) = \frac{p}{\sqrt{p^2 + m_i^2}} \end{array} \\ \underline{\beta_{id} \text{ bev}}_{id \text{ Dev}} \beta_i(p) = \frac{p}{\sqrt{p^2 + m_i^2}} \end{array}$ Proton chi2pid σ_p 250 Electron chi2pid h electron chi2pid 13799 200 0.09558 Mean 0.8886 Std Dev 150 400 100 300 50 200 chi2pid 100 ProjectionY of binx=[91,115] [x=1.800..2.300] ProjectionY of binx=[91,115] [x=1.800..2.300] slice py of pim chi2pid vs F slice_py_of_pim_chi2pid_vs chi2pid 0.05297 π π Std De 0.9929 Std De z²/ndf 1586 / 65 1586/6 1.081e+05 ± 6.717e+01 Constant 1.081e+05 ± 6.717e+01 -0.05128 ± 0.0005 Mear -0.05128 ± 0.0005 0.9303 ± 0.0005 0.9303 ± 0.000 σ = 0.88 $\sigma = 0.93$ chi2nid

•

- 1. N. Baltzell, "Event Builder Status", (CLAS Collaboration, July 2018).
- 2. S. Diehl, "Particle Identification and Fiducial Volumes for the First SIDIS Publications", (CLAS Collaboration, July 2020).
- 3. J. Newton, "J/ψ Photoproduction Near Threshold With CLAS12", PhD thesis (Old Dominion University, 2021). CLAS Collaboration Meeting

March 2024

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

- $10 \phi^*$ bins with equal number of events
- Bin edges = 0, 38, 68, 91, 115, 180, 246, 269, 294, 324, 360 degrees

bins

Φ

Monte Carlo Simulations: Signal

- clas12elspectro
- Reaction channel: $ep \rightarrow e'p'\eta$
- Signal only
- Background Merging included

MC vs Data

Monte Carlo Simulations: Background

- TWOPEG
- 2pion background
- Background Merging included

Model Fitting: Extracting η Yields

- $1.486 \text{ GeV} \le W < 1.610 \text{ GeV}$
- Asymmetric missing mass2 distribution due to near η production threshold behavior
- Special models developed
- Majority of η data focuses on S11(1535)

- $1.610 \text{ GeV} \le W < 2.210 \text{ GeV}$
- Background symmetric under the signal
- Can use relatively simple total model of Gaussian signal + polynomial background

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Near production threshold

CrystalBall+Pol1Gaus after fit (Helicity = -1)

CrystalBall+Pol2Gaus after fit (Helicity = -1)

Quality of MM2 Fits

Comparison of pol background fits

Systematic Uncertainty Calculation

- Use results from pol3 as "benchmark"
- Calculate Mean Absolute Error (MAE)
 - Average absolute difference between predicted and observed values
 - Evaluate the average absolute deviation of data points from different fitting models (pol2, pol3, pol4) against the benchmark model (pol3)
 - Focuses on the average magnitude of errors
 - Less sensitive to outliers than (R)MSE (Root Mean Squared Error)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |Y_{benchmark} - Y_{model,i}|$$

Beam Spin Asymmetry: η signal

85.17%

۳.

0.2

W in [1.810, 1.860) GeV

¢* [dea]

Pol2
 Pol3

A Pol4

Background: Pol3

A±A A=0.0528±0.01562

150

x^2/ndf=19.061/9=2.118

200

Background: Pol

y^2/ndf=28.315/9=3.146

300

¢* [deg]

A±A A=0.0402±0.01734

Pol2
 Pol3
 Pol4

- 85.17%

۴.

P_N+N P_N+N

0.2

W in [1.685, 1.710) GeV

- Data binned over W and ϕ^*
- Data integrated over Q^2 and $\cos\theta^*$
- Background: pol2 pol3 pol4 ٠
- BSA y range ±0.35
- $Asin\phi^*$ fit

CLAS Collaboration Meeting March 2024

85.17%

 $\frac{1}{P_b}\frac{N^+-N}{N^++N}$

3SA

0.2

-0.2

Background: Pol2

χ^2/ndf=9.014/9=1.002

A±0 A=-0.0763±0.01652

Model:

 Pol2
 Pol3 A Pol4

Beam Spin Asymmetry: Background

0.02

Pol2
 Pol3

Pol4

W in [1.810, 1.860) GeV

W in [1.860, 1.910) GeV

W in [1.685, 1.710) GeV

P_b N⁺ + N

0.01

-0.02

- Data binned over W and φ^*
- Data integrated over Q^2 and $\cos\theta^*$
- Background: pol2 pol3 pol4
- BSA y range ±0.035
- Asinφ* fit

CLAS Collaboration Meeting March 2024

THE GEORGE WASHINGTON UNIVERSITY

Pol3

Beam Spin Asymmetry: Background

THE GEORGE WASHINGTON UNIVERSITY

Systematic Uncertainty

Systematic Uncertainty

Statistical Un

Fit: A=-0.010±0.003 y2/nd

- BSA y range ±0.035
- $Asin\phi^*$ fit

Sin moment of the asymmetry $A_{LU}^{sin\phi^*}$: η signal

- Data binned over W and ϕ^*
- Data integrated over Q^2 and $\cos\theta^*$
- Error bars: statistical uncertainty
- Grey histograms around zero line: systematic uncertainty
- Results from Asinφ* fit to BSA

Sin moment of the asymmetry A_{LU}^{sinφ*}: Background

CLAS Collaboration Meeting March 2024

2.2

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Systematic Uncertainty

Statistical Uncertainty

Data

2.1

1/2

N(189

1.9

W [GeV]

2.0

Bins in W and Q²: A_{LU}^{sinφ*}

- Data binned over W, ϕ^* , and Q^2
- Data integrated over cosθ*
- Error bars: statistical uncertainty
- Grey histograms around zero line: systematic uncertainty

$$BSA \approx A_{LU}^{\sin \phi *} \sin \phi *$$

Comparison to Jülich-Bonn-Washington (JBW) Model

CLAS Collaboration Meeting March 2024

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Comparison to EtaMAID Model

What about adding the cosp* moments?

- So far used $Asin\phi^*$ fit to BSA
- But what about:

$$BSA(\phi*) = \frac{A\sin\phi*}{1 + B\cos\phi*}$$

$$BSA(\phi*) = \frac{A\sin\phi*}{1 + B\cos\phi* + C\cos 2\phi*}$$

Results of adding cosφ* moments

CLAS Collaboration Meeting

March 2024

 $A\sin\phi *$

- BSA y range ±0.35
- Binned over W and φ*
- Integrated over Q2 and $\cos\theta^*$
- Unconstrained B

Update

CLAS Collaboration Meeting March 2024

46

WASHINGTON, DC

W ∈ [1.685, 1.710) GeV

POL2: A = -0.070 +/- 0.045, B = 1.025 +/- 0.358, C = 0.231 +/- 0.369, x²/NDF = 0.864

POL3: A = -0.062 +/- 0.029, B = 1.108 +/- 0.214, C = 0.301 +/- 0.220, x²/NDF = 1.957

OL4: A = -0.061 +/- 0.038, B = 1.074 +/- 0.306, C = 0.246 +/- 0.328, x²/NDF = 1.219

Fits to BSA

- BSA y range ±0.35
- Binned over W and φ*
- Integrated over Q2 and $\cos\theta^*$
- Unconstrained B and C

85.17%

å

 $\frac{1}{P_{h}N^{+} + N^{-}}$

Comparison of sin moment

CLAS Collaboration Meeting March 2024

48