Polarised Two Pion Photoproduction For MesonEx

Derek Glazier University of Glasgow

CLAS Collaboration Meeting

Polarised photoproduction of 2 spinless particles

Decay process can be studied in a number of related ways :

Moments of spherical harmonic distributions

Fourier analysis up to some truncation in L CLAS results (Battaglieri et al, 2000) still being analysed by JPAC

Spin Density Matrix Elements Classic Schilling, Seybouth and Wolf paper for Vector mesons Extended to electroproduction Assumes only P-wave contributions Recent GlueX results

Partial Wave Amplitudes Allows multitude of contributing resonances of all 1 Mass dependence allows pole extraction GOAL for spectroscopy

When analysing final states with CLAS12 that have > 2 particles (+ e') We **must** consider the two-body decays when measuring cross sections and beam spin asymmetries if we integrate over decay angle. or else they are not reliable (they are a product of detector*physics)

Greater connection to physics

Polarised Photoproduction - Amplitudes and Moments

The vector P_{γ} encodes the information about the polarization of the beam [10]. Similarly, one defines

$$I(\Omega, \Phi) = I^{0}(\Omega) + \boldsymbol{I}(\Omega) \cdot \boldsymbol{P}_{\gamma}(\Phi), \qquad (A7)$$

with the vector of polarized intensities $I = (I^1, I^2, I^3)$. The angular distribution can be expanded in unpolarized moment H^0 and polarized moments $H = (H^1, H^2, H^3)$ via

$$I^{0}(\Omega) = \sum_{LM} \left(\frac{2L+1}{4\pi}\right) H^{0}(LM) D_{M0}^{L*}(\phi, \theta, 0),$$
(A8a)

$$\boldsymbol{I}(\Omega) = -\sum_{LM} \left(\frac{2L+1}{4\pi}\right) \boldsymbol{H}(LM) D_{M0}^{L*}(\phi,\theta,0).$$
(A8b)

The extra minus sign in the definition of H ensures that $H^1(00)$ is positive for positive reflectivity waves, cf. Sect. D. The moments are expressed in terms of the $\eta \pi^0$ SDME:

mm

$$H^{0}(LM) = \sum_{\substack{\ell\ell' \\ mm'}} \left(\frac{2\ell'+1}{2\ell+1}\right)^{1/2} C^{\ell 0}_{\ell' 0L0} C^{\ell m}_{\ell'm'LM} \rho^{\alpha,\ell\ell'}_{mm'},$$
(A9a)
$$H(LM) = -\sum_{\ell\ell'} \left(\frac{2\ell'+1}{2\ell+1}\right)^{1/2} C^{\ell 0}_{\ell' 0L0} C^{\ell m}_{\ell'm'LM} \rho^{\ell\ell'}_{mm'}$$
(A9b)

Moments of angular distribution and beam asymmetries in $\eta\pi^0$ photoproduction at GlueX

V. Mathieu, M. Albaladejo, C. Fernández-Ramírez, A. W. Jackura, M. Mikhasenko, A. Pilloni, and A. P. Szczepaniak (Joint Physics Analysis Center Collaboration) Phys. Rev. D 100, 054017 – Published 17 September 2019

And assuming γ spin density matrix, $\rho_{\gamma}(\Phi) = \frac{1}{2} \left(1 - P_{\gamma L} \cos 2\Phi \sigma_x - P_{\gamma L} \sin 2\Phi \sigma_y - P_{\gamma C} \sigma_z \right)$

* currently checking if dependence on ellipse major axis length

→ Real parts of $[l][l']^* \propto \cos(\Delta phase)$

→ Imaginary parts of $[l][l']^* \propto sin(\Delta phase)$

I³ may allow to resolve sign ambiguity in phase *in principle we have this already with CLAS12

Ambiguities in Linear Polarised PWA

PHYSICAL REVIEW D 108, 076001 (2023)

In the general linear polarised case there is only a single "trivial" complex conjugate ambiguous solution

-Specific cases with 0 magnitude waves, can complicate this

-Should limit 1 wave per reflectivity to have +ve imaginery part

=> Remove ambiguity from
MaxLikelihood search

*our plots removed the trivial ambiguity

**but so does the electron polarisation !

Moments in terms of S,P waves

Parameters are normalised : $H^{0}(0,0) = 2$ and PW magnitudes <1

 $H^{0}(0,0) = 2(^{+}S^{+}S) + 2(^{-}S^{-}S) + 2(^{+}P^{+}_{-1}P_{-1}) + 2(^{+}P^{+}_{+1}P_{+1})$ $+2(^{-}P_{-1}^{-}P_{-1})+2(^{-}P_{-1}^{-}P_{+1})+2(^{+}P_{0}^{+}P_{0})+2(^{-}P_{0}^{-}P_{0})$ $H^{1}(0,0) = 2({}^{+}S^{+}S) + -2({}^{-}S^{-}S) + -4({}^{+}P^{+}_{+1}P_{-1})\cos({}^{+}\phi_{P+1} - {}^{+}\phi_{P-1}))$ $+4(^{-}P_{+1}^{-}P_{-1})\cos(^{-}\phi_{P+1}-^{-}\phi_{P-1}))+2(^{+}P_{0}^{+}P_{0})+-2(^{-}P_{0}^{-}P_{0})$ $H^{0}(1,0) = 2.3(^{+}S^{+}P_{0})\cos(^{+}\phi_{S} - ^{+}\phi_{P0}))$ $+2.3(^{-}S^{-}P_{0})\cos(^{-}\phi_{S}-^{-}\phi_{P0}))$ $H^{1}(1,0) = 2.3(^{+}S^{+}P_{0})\cos(^{+}\phi_{S} - ^{+}\phi_{P0}))$ $-2.3(^{-}S^{-}P_{0})\cos(^{-}\phi_{S}-^{-}\phi_{P0}))$ $H^{0}(1,1) = -1.2(^{+}S^{+}P_{-1})\cos(^{+}\phi_{S} - ^{+}\phi_{P-1})) + 1.2(^{+}S^{+}P_{+1})\cos(^{+}\phi_{S} - ^{+}\phi_{P+1}))$ $-1.2(^{-}S^{-}P_{-1})\cos(^{-}\phi_{S}-^{-}\phi_{P-1}))+1.2(^{-}S^{-}P_{+1})\cos(^{-}\phi_{S}-^{-}\phi_{P+1}))$ $H^{1}(1,1) = -1.2(^{+}S^{+}P_{-1})\cos(^{+}\phi_{S} - ^{+}\phi_{P-1})) + 1.2(^{+}S^{+}P_{+1})\cos(^{+}\phi_{S} - ^{+}\phi_{P+1}))$ $+1.2({}^{-}S^{-}P_{-1})\cos({}^{-}\phi_{S}-{}^{-}\phi_{P-1}))+-1.2({}^{-}S^{-}P_{+1})\cos({}^{-}\phi_{S}-{}^{-}\phi_{P+1}))$ $H^{2}(1,1) = -1.2(^{+}S^{+}P_{-1})\cos(^{+}\phi_{S} - ^{+}\phi_{P-1})) + -1.2(^{+}S^{+}P_{+1})\cos(^{+}\phi_{S} - ^{+}\phi_{P+1}))$ $+1.2(^{-}S^{-}P_{-1})\cos(^{-}\phi_{S}-^{-}\phi_{P-1}))+1.2(^{-}S^{-}P_{+1})\cos(^{-}\phi_{S}-^{-}\phi_{P+1}))$ $H^{3}(1,1) = 1.2(^{+}S^{+}P_{-1})\sin(^{+}\phi_{S} - ^{+}\phi_{P-1})) + 1.2(^{+}S^{+}P_{+1})\sin(^{+}\phi_{S} - ^{+}\phi_{P+1}))$ $+1.2(^{-}S^{-}P_{-1})\sin(^{-}\phi_{S}-^{-}\phi_{P-1}))+1.2(^{-}S^{-}P_{+1})\sin(^{-}\phi_{S}-^{-}\phi_{P+1}))$

 $H^{0}(2,0) = -0.4(^{+}P_{-1}^{+}P_{-1}) + -0.4(^{+}P_{+1}^{+}P_{+1}) + -0.4(^{-}P_{-1}^{-}P_{-1})$ $-0.4(^{-}P_{+1}^{-}P_{+1}) + 0.8(^{+}P_{0}^{+}P_{0}) + 0.8(^{-}P_{0}^{-}P_{0})$ $H^{1}(2,0) = 0.8(^{+}P^{+}_{+1}P_{-1})\cos(^{+}\phi_{P+1} - ^{+}\phi_{P-1})) - 0.8(^{-}P^{-}_{+1}P_{-1})\cos(^{-}\phi_{P+1} - ^{-}\phi_{P-1}))$ $+0.8(^{+}P_{0}^{+}P_{0}) - 0.8(^{-}P_{0}^{-}P_{0})$ $H^{0}(2,1) = -0.7(^{+}P_{0}^{+}P_{-1})\cos(^{+}\phi_{P0} - ^{+}\phi_{P-1})) + 0.7(^{+}P_{0}^{+}P_{+1})\cos(^{+}\phi_{P0} - ^{+}\phi_{P+1}))$ $-0.7(^{-}P_{0}^{-}P_{-1})\cos(^{-}\phi_{P0} - ^{-}\phi_{P-1})) + 0.7(^{-}P_{0}^{-}P_{+1})\cos(^{-}\phi_{P0} - ^{-}\phi_{P+1}))$ $H^{1}(2,1) = -0.7(^{+}P_{0}^{+}P_{-1})\cos(^{+}\phi_{P0} - ^{+}\phi_{P-1})) + 0.7(^{+}P_{0}^{+}P_{+1})\cos(^{+}\phi_{P0} - ^{+}\phi_{P+1}))$ $+0.7(^{-}P_{0}^{-}P_{-1})\cos(^{-}\phi_{P0}^{-}-^{-}\phi_{P-1})) - 0.7(^{-}P_{0}^{-}P_{+1})\cos(^{-}\phi_{P0}^{-}-^{-}\phi_{P+1}))$ $H^{2}(2,1) = -0.7(^{+}P_{0}^{+}P_{-1})\cos(^{+}\phi_{P0} - ^{+}\phi_{P-1})) - 0.7(^{+}P_{0}^{+}P_{+1})\cos(^{+}\phi_{P0} - ^{+}\phi_{P+1}))$ $+0.7(^{-}P_{0}^{-}P_{-1})\cos(^{-}\phi_{P0}^{-}-^{-}\phi_{P-1}))+0.7(^{-}P_{0}^{-}P_{+1})\cos(^{-}\phi_{P0}^{-}-^{-}\phi_{P+1}))$ $H^{3}(2,1) = 0.7(^{+}P_{0}^{+}P_{-1})\sin(^{+}\phi_{P0} - ^{+}\phi_{P-1})) + 0.7(^{+}P_{0}^{+}P_{+1})\sin(^{+}\phi_{P0} - ^{+}\phi_{P+1}))$ $+0.7(^{-}P_{0}^{-}P_{-1})\sin(^{-}\phi_{P0}-^{-}\phi_{P-1}))+0.7(^{-}P_{0}^{-}P_{+1})\sin(^{-}\phi_{P0}-^{-}\phi_{P+1}))$ $H^{0}(2,2) = -0.98(^{+}P^{+}_{+1}P_{-1})\cos(^{+}\phi_{P+1} - ^{+}\phi_{P-1}))$ $-0.98(^{-}P_{+1}^{-}P_{-1})\cos(^{-}\phi_{P+1}-^{-}\phi_{P-1}))$ $H^{1}(2,2) = 0.49(^{+}P^{+}_{-1}P_{-1}) + 0.49(^{+}P^{+}_{+1}P_{+1})$ $-0.49(^{-}P_{-1}^{-}P_{-1}) - 0.49(^{-}P_{+1}^{-}P_{+1})$ $H^{2}(2,2) = 0.49(^{+}P^{+}_{-1}P_{-1}) - 0.49(^{+}P^{+}_{+1}P_{+1})$ $-0.49(^{-}P_{-1}^{-}P_{-1}) + 0.49(^{-}P_{+1}^{-}P_{+1})$ $H^{3}(2,2) = 0.98(^{+}P^{+}_{+1}P_{-1})\sin(^{+}\phi_{P+1} - ^{+}\phi_{P-1}))$ $+ 0.98(^{-}P_{+1}^{-}P_{-1})\sin(^{-}\phi_{P+1} - ^{-}\phi_{P-1}))$

*Note approx. CG coefficients

For vector mesons these moments = 0 as S-wave = 0

Spin Density Matrix Elements, p photoproduction

GlueX results

Measurement of Spin-Density Matrix Elements in ρ (770) Production with a Linearly Polarized Photon Beam at $E_{\gamma} = 8.2 - 8.8 \,\text{GeV}$

$$\begin{split} W^{0}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\frac{1}{2} (1-\rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0}-1)\cos^{2}\vartheta \quad (10) \\ &- \sqrt{2} \operatorname{Re} \rho_{10}^{0} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{0} \sin^{2}\vartheta \cos 2\varphi \right) \\ W^{1}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\rho_{11}^{1} \sin^{2}\vartheta + \rho_{00}^{1} \cos^{2}\vartheta \quad (11) \\ &- \sqrt{2} \operatorname{Re} \rho_{10}^{1} \sin 2\vartheta \cos\varphi - \rho_{1-1}^{1} \sin^{2}\vartheta \cos 2\varphi \right) \\ W^{2}(\cos\vartheta,\varphi) &= \frac{3}{4\pi} \left(\sqrt{2} \operatorname{Im} \rho_{10}^{2} \sin 2\vartheta \sin\varphi \quad (12) \\ &+ \operatorname{Im} \rho_{1-1}^{2} \sin^{2}\vartheta \sin 2\varphi \right) . \end{split}$$

$$\begin{split} \Re \rho_{10}^{0} &= \frac{5}{\sqrt{12}} H^{0}(21) \\ \rho_{1-1}^{0} &= -\frac{5}{\sqrt{6}} H^{0}(22) \\ \rho_{11}^{1} &= -\frac{1}{3} H^{1}(00) \\ \rho_{00}^{1} &= -\frac{5}{2} H^{1}(20) - \frac{1}{3} H^{1}(00) \\ \Re \rho_{10}^{1} &= -\frac{5}{\sqrt{12}} H^{1}(21) \\ \rho_{1-1}^{1} &= \frac{5}{\sqrt{6}} H^{1}(22) \\ \Im \rho_{10}^{2} &= -\frac{5}{\sqrt{12}} H^{2}(21) \\ \Im \rho_{1-1}^{2} &= \frac{5}{\sqrt{6}} H^{2}(22) \\ \Im \rho_{10}^{3} &= -\frac{5}{\sqrt{12}} H^{3}(21) \\ \Im \rho_{1-1}^{3} &= \frac{5}{\sqrt{6}} H^{3}(22) \end{split}$$

This tells us what our data should look like

Extracting Partial Waves from GlueX SDMEs

$$\mathcal{I}(\Omega, \Phi) = \mathcal{I}_0(\Omega) - \mathcal{I}_1(\Omega) P_{\gamma L} \cos 2\Phi - \mathcal{I}_2(\Omega) P_{\gamma L} \sin 2\Phi - \mathcal{I}_3(\Omega) P_{\gamma C}.$$

Generate events from SDME intensities $\mathcal{I}_{0}(\Omega) = \frac{3}{4\pi} \{ \frac{1}{2} (1 - \rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0} - 1) \cos^{2}\theta - \sqrt{2} \Re[\rho_{10}^{0}] \sin 2\theta \cos \phi - \rho_{1-1}^{0} \sin^{2}\theta \cos 2\phi \}$

$$\mathcal{I}_1(\Omega) = \frac{3}{4\pi} \{ \rho_{11}^1 \sin^2 \theta + \rho_{00}^1 \cos^2 \theta - \sqrt{2} \rho_{10}^1 \sin 2\theta \cos \phi - \rho_{1-1}^1 \sin^2 \theta \cos 2\phi \}$$

$$\mathcal{I}_2(\Omega) = \frac{3}{4\pi} \{ \sqrt{2} \Im \rho_{10}^2 \sin 2\theta \sin \phi + \Im \rho_{1-1}^2 \sin^2 \theta \sin 2\phi \}$$

Then fit to extract partial waves for ρ production, S,P₀,P₁,P₋₁ $I^0(\Omega) = \kappa \sum_{\epsilon,k} |U_k^{(\epsilon)}(\Omega)|^2 + |\widetilde{U}_k^{(\epsilon)}(\Omega)|^2$,

Then calculate Helicity intensity

$$I^{3}(\Omega) = \kappa \sum_{\epsilon,k} |U_{k}^{(\epsilon)}(\Omega)|^{2} - |\widetilde{U}_{k}^{(\epsilon)}(\Omega)|^{2} .$$

i.e. in principle helicity SDMEs already constrained => Can perform electron beam polarimetry

Polarisation asymmetries for ρ

Quasi-real Vector Meson Electroproduction

Nuclear Physics B61 (1973) 381-413. North-Holland Publishing Company

HOW TO ANALYSE VECTOR-MESON PRODUCTION IN INELASTIC LEPTON SCATTERING

K. SCHILLING Fakultat Physik der Universitat Bielefeld, Bielefeld

G. WOLF Deutsches Elektronen-Synchrotron DESY, Hamburg

$$W(\cos\theta, \phi, \Phi, \alpha_{2} = 0, \pi) = W^{\text{unpol}}(\cos\theta, \phi, \Phi) = W^{\text{long pol}}(\cos\theta, \phi, \Phi);$$
(88)

$$W^{\text{unpol}}(\cos\theta, \phi, \Phi) = \frac{1}{1 + (\epsilon + \delta)R} \frac{3}{4\pi}$$

$$\times \left[\frac{1}{2}(1 - \rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0} - 1)\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin 2\theta\cos\phi - \rho_{1-1}^{0}\sin^{2}\theta\cos 2\phi\right]$$

$$-\epsilon \cos 2\Phi \left\{\rho_{11}^{1}\sin^{2}\theta + \rho_{00}^{1}\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin 2\theta\cos\phi - \rho_{1-1}^{1}\sin^{2}\theta\cos 2\phi\right\}$$

$$-\epsilon \sin 2\Phi \left\{\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin 2\theta\sin\phi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\theta\sin 2\phi\right\}$$

$$W^{\text{long pol}}(\cos\theta, \phi, \Phi) = \frac{1}{1 + (\epsilon + \delta)R} \frac{3}{4\pi}$$

$$\times P\left[\sqrt{1 - \epsilon^{2}} \left\{\sqrt{2}\operatorname{Im}\rho_{10}^{3}\sin 2\theta\sin\phi + \operatorname{Im}\rho_{1-1}^{3}\sin^{2}\theta\sin 2\phi\right\} +$$
For low Q² we assume,

$$\rho_{\gamma}(\Phi) = \frac{1}{2}\left(1 - \epsilon\cos 2\Phi \sigma_{x} - \epsilon\sin 2\Phi \sigma_{y} - P_{beam}\sqrt{1 - \epsilon^{2}}\sigma_{z}\right)$$
With ϵ the virtual photon polarisation

Preliminary Pass 2 Spring19 data

Analyse both missing pion topologies

In general these should not pass the mesonex trigger (2*FD tracks)
 ? But actually most events seem to have this trigger bit

There is a prescaled (32) FT*FD*CD trigger, cut on this trigger bit ! currently trigger is not part of simulation

The π - may be detected in the FT and assumed as the e-. This peaks close to missing pion events. Cut on $\theta_{\pi} > \theta_{e}$: removes almost all, but effects acceptance

Additional cut on $70 < \theta_{p} < 130^{\circ}$, removes some background but not signal

Isolate exclusive signal with sPlots fits to missing mass squared – split data in W, t, and $\cos\theta$ to reduce dependencies on MM^2

Splot Background Subtraction fits

Fit with Simulation template for signal , polynomial for background Need to add 3 pion simulation template for background

Due to large (8 degree) forward hole, acceptance is low at low mass (opening angle) Acceptance recovered by reconstructing 1 pion, but prescaled in the trigger

A_1 for ρ

-0.9 < t' < -0.5

Additional Cuts : 3.0<W<4.2 0.6<M(2π)<0.9 Correct for pol.

A_2 for ρ

-0.4 < t' < -0.1

Actual Data

Prediction From GlueX results

-0.9 < t' < -0.5

Additional Cuts : 3.0<W<4.2 0.6<M(2π)<0.9

Correct for pol.

A_3 for ρ

-0.5 < t' < -0.1

Actual Data

"Fit"

to Data

Prediction

From GlueX

results

$\cos\theta$ ϕ_{-1} -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Φ -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 $\cos\theta$

Additional Cuts : 3.0<W<4.2 0.6<M(2π)<0.9

Correct for pol.

Data has larger H(22) moment. => Larger P₋₁ Smaller P₀

Proper Fits : SDMEs

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2^t

0.1 0.2

1.+++

0.3

0.4 0.5 0.6 0.7 0.8

Not good consistency at the moment with GlueX and between W bins

Particular problem with rho000 due to $\cos\theta$ distribution

-0.3

-0.4

-0.5

0.1

0.2 0.3

0.4 0.5 0.7

0.8

ť

0.6

Rho010

.

Fit Projections

Black points - data Red line Fit - result

Top - low t (-0.1)Bottom - high t (-0.6)

Proper Fits : Moments

Proper Fits : Partial Waves

```
Results more or less follow
expectations :
    Large 'P+1 (S-channel hel. Cons.)
    Other 'P grow with t'
    -ve reflectivity should be
    smaller
    S-waves should be small ~0
```


Beam Polarimetry

When performing PWA we leave the "circular" pol. As a free parameter, thereby extracting it.

From this the beam polarisation may be calculated.

To get correct absolute polarisation we require excellent acceptance correction. Not there yet!!!

Relative Beam Polarisation Monitor

Conclusions

- MesonEx aims to extract Partial Wave Amplitudes for a number of reactions
- Currently we are using ρ photoproduction as a validation of method and Experimental effects (backgrounds, acceptances)
- We also measure SDMEs and Spherical Harmonic moments for this
- Currently we see significant discrepancies as a result we need to :
 - Analyse exclusive final state low background, low acceptance for ρ
 - Improve background subtractions use more simulated models
 - Apply momentum and efficiency corrections
 - Apply trigger effects in simulations

In addition this reaction may potentially be used as an absolute and relative beam polarimeter

Exclusive Topology Q² >1.5 3.8M

Exclusive Topology Q² > 1.5 && W > 3 0.3M

Larger N* contribution than for Quasi-real photoproduction

- possibly just due to acceptance (larger transerver momentum in final state)
- how to analyse ?

Missing pion Topology Q² > 1.5 && W > 3 0.6M

Example Moments

- Considering **only +ve reflectivity** S,D-,D0,D+ waves The expressions for $H^{\alpha}(4,2)$ are relatively straightforward (minus Clebsh Gordan coeffs)
- $H^{0}(4,2) = -2((D+)(D-)\cos(\phi_{D+}-\phi_{D-}))$
- $H^{1}(4,2) = (D-)(D-) + (D+)(D+)$
- $H^{2}(4,2) = (D-)(D-) (D+)(D+)$
- $H^{3}(4,2) = 2((D+)(D-)sin(\varphi_{D+}-\varphi_{D-}))$

Here we have 4 equations with 4 unknowns and it is clear we can extract The magnitudes (sum and difference of H¹(42) and H²(42) The phases (from ratio of H⁰(42) and H³(42)). Without H³(42) we could just extract $\cos(\varphi_{D_{+}}-\varphi_{D_{-}})$ leaving a sign ambiguity in $(\varphi_{D_{+}}-\varphi_{D_{-}})$.

Amplitude Results +ve refectivity

Amplitude Results -ve refectivity

Amplitude Results, unknown Plin

Amplitude Results, unknown Plin and Pcirc

Photon SDM Schilling, Seyboth, Wolf

For linearly polarized photons eq. (11) reads:

$$|\gamma\rangle = -\frac{1}{\sqrt{2}} \left(\mathrm{e}^{-i\Phi} \left| \lambda_{\gamma} \right| + 1 \right) - \mathrm{e}^{i\Phi} \left| \lambda_{\gamma} \right| = -1 \right)$$
,

where Φ is the angle between the polarization vector of the photon, $\varepsilon = (\cos \Phi, \sin \Phi, 0)$, and the production plane (x, z plane) (note: our definition of Φ differs by a sign from that of ref. [4]). The density matrix is

$$\rho^{\text{pure}}(\gamma) = \frac{1}{2} \begin{pmatrix} 1 & -e^{-2i\Phi} \\ -e^{2i\Phi} & 1 \end{pmatrix}$$

For elliptically polarized photons, eq. (11) reads:

$$\langle \gamma \rangle = \frac{1}{\sqrt{2(a^2 + b^2)}} \left\{ -(a+b) e^{-i\Phi} \left| \lambda_{\gamma} = +1 \right\rangle + (a-b) e^{i\Phi} \left| \lambda_{\gamma} = -1 \right\rangle \right\},$$

where a and b are the lengths of the principal axes of the ellipse and Φ is the azimuthal angle of the principle axis a. The corresponding density matrix is given by:

$$\rho^{\text{pure}}(\gamma) = \frac{1}{2} \begin{pmatrix} 1 + 2a\sqrt{1-a^2} & e^{-2i\Phi}(1-2a^2) \\ e^{2i\Phi}(1-2a^2) & 1 - 2a\sqrt{1-a^2} \end{pmatrix}, \quad (17)$$

with a, b normalized to $a^2 + b^2 = 1$. Obviously the cases of circularly or linearly polarized photons can be obtained by specializing eq. (17) to $a = \pm 1/\sqrt{2}$ or a = 1 respectively.

We generalize these results to the case of partially polarized photons and put them into a standard form by writing $\rho(\gamma)$ as a linear combination of the matrices *I*, σ_i (*i* = 1, 2, 3), which from a complete set in the space of 2×2 hermitian matrices

$$\rho(\gamma) = \frac{1}{2}I + \frac{1}{2}\boldsymbol{P}_{\gamma} \cdot \boldsymbol{\sigma} , \qquad (18)$$

where I is the 2×2 unit matrix, σ_i are the three Pauli matrices. The length P_{γ} of the three-vector P_{γ} is equal to the degree of polarization. The direction of P_{γ} depends on the kind of polarization, e.g. (from eqs. (13) (15) and (15)):

$$P_{\gamma} = P_{\gamma}(0, 0, \pm 1)$$

$$P_{\gamma} = P_{\gamma}(-\cos 2\Phi, -\sin 2\Phi, 0) \qquad (19)$$

(16) for circular polarization with $\lambda_{\gamma} = \pm 1$ and for linear polarization respectively with $0 \le P_{\gamma} \le 1$.

Quasi-real electroproduction

Nuclear Physics B61 (1973) 381-413. North-Holland Publishing Company

HOW TO ANALYSE VECTOR-MESON PRODUCTION IN INELASTIC LEPTON SCATTERING

K. SCHILLING Fakultat Physik der Universität Bielefeld, Bielefeld

G. WOLF Deutsches Elektronen-Synchrotron DESY, Hamburg

$$\rho(\gamma) = \frac{1}{2} \sum_{\alpha=0}^{8} \tilde{\Pi}_{\alpha} \Sigma^{\alpha} ;$$

$$\widetilde{\Pi} = \{1, -\epsilon \cos 2\Phi, -\epsilon \sin 2\Phi, \frac{2m}{Q} (1-\epsilon)P_{0}, \epsilon+\delta,$$

$$\sqrt{2\epsilon(1+\epsilon+2\delta)} \cos \Phi, \sqrt{2\epsilon(1+\epsilon+2\delta)} \sin \Phi,$$

$$\frac{2m}{Q} (1-\epsilon) (P_{1} \cos \Phi + P_{2} \sin \Phi), \frac{2m}{Q} (1-\epsilon) (P_{1} \sin \Phi - P_{2} \cos \Phi)\} .$$
(65)

(88)

 $\epsilon \cos 2\Phi \sigma_x - \epsilon \sin 2\Phi \sigma_y - P_{beam} \sqrt{1 - \epsilon^2} \sigma_z$

$$W(\cos\theta, \phi, \Phi, \alpha_{2} = 0, \pi) = W^{\text{unpol}}(\cos\theta, \phi, \Phi) \pm W^{\log \text{pol}}(\cos\theta, \phi, \Phi);$$

$$(88)$$

$$W^{\text{unpol}}(\cos\theta, \phi, \Phi) = \frac{1}{1 + (\epsilon + \delta)R} \frac{3}{4\pi}$$

$$\times [\frac{1}{2}(1 - \rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0} - 1)\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\theta\cos\phi - \rho_{1-1}^{0}\sin^{2}\theta\cos2\phi$$

$$-\epsilon \cos 2\Phi \{\rho_{11}^{1}\sin^{2}\theta + \rho_{00}^{1}\cos^{2}\theta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\theta\cos\phi - \rho_{1-1}^{1}\sin^{2}\theta\cos2\phi\}$$

$$-\epsilon \sin 2\Phi \{\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\theta\sin\phi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\theta\sin2\phi\}$$

$$P[\sqrt{1 - \epsilon^{2}} \{\sqrt{2}\operatorname{Im}\rho_{10}^{3}\sin2\theta\sin\phi + \operatorname{Im}\rho_{1-1}^{3}\sin^{2}\theta\sin2\phi\} + \operatorname{For} \operatorname{IoW} Q^{2} \text{ We assume,}$$

$$\rho_{\gamma}(\Phi) = \frac{1}{2} (1 - \epsilon \cos 2\Phi \sigma_{x} - \epsilon \sin 2\Phi \sigma_{y} - P_{beam}\sqrt{1 - \epsilon^{2}}\sigma_{z})$$
With ϵ the virtual photon polarisation

Elliptical Polarisation for MesonEx

Quasi-real photoproduction:

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS
- Detection of the scattered electron for the tagging of the quasi-real photon in the CLAS12 FT
- High-intensity and high linear-polarization tagged "photon" beam; degree of polarization determined event-by-event from the electron kinematics
- Longitudinal e- polarisation transferred to virtual photon as "circular polarisation"
- In FT acceptance P_{lin} and $P_{\text{circ}} \sim 0.65$

Photon Polarisation Simulations

Start with the same waveset as in ambiguity paper

$[\ell]_m$	Magnitude	Phase
S_0	0.499	0°
D_{-1}	0.201	15.4°
D_0	0.567	174°
D_1	0.624	-81.6°

No -ve reflectivity (for now)

 $\mathcal{I}(\Omega, \Phi) = \mathcal{I}_0(\Omega) - \mathcal{I}_1(\Omega) P_{\gamma L} \cos 2\Phi - \mathcal{I}_2(\Omega) P_{\gamma L} \sin 2\Phi - \mathcal{I}_3(\Omega) P_{\gamma C}.$

```
Generate data 10k events with full \alpha=0,1,2,3 intensities P_{vc}, P_{vL} uniform in range 0-0.5
```

Perform 50 fits with different polarisation information Only fit for the non-zero generated waves, as in the paper.

```
Negative Log Likelihood is shown on y-axis, amplitude components on x axis Solution => highest likelihood
```

Simulations - Unpolarised

But low chance of local max.

Simulations - Unpolarised

Uncertainties large.

Simulations - Linearly Polarised (as paper)

Single solution with Complex conjugate Smaller uncertainties

NLL

-80000

-79500

-79000

Entries

Mean

Std Dev

51

830

-8.136e+04

Simulations — Circular polarised

But no complex conjugate Smaller uncertainties

NLL

Simulations - Elliptically Polarised

Potential polarimetry ?

From linear polarised fit we have fully determined the partial waves - We can already calculate the I³ intensity for both complex conjugates

Complex conjugate solutions H3 moments

- So we are overconstrained in our fits
 => should result in smaller uncertainties
 => Or we can introduce an additional unknown parameter
 the photon circular polarisation degree
- Next I just redo the elliptically polarised fit with $\rm P_{\rm yC}$ as a parameter not an observable.

Simulations - Elliptical polarised, unknown P_c

Results with MCMC

Final uncertanties are similar apart from D- which : $0.17 \rightarrow 0.10$

