

CLAS12 Charged Two-Pion Electroproduction Off the Proton

Krishna Neupane USC, Columbia, SC

Overview

$>$ Goal : Exclusive two-pion channel electroproduction cross-sections extraction in resonance region with Q^{2} range (1.5-10.5) (GeV/c) ${ }^{2}$
$>$ Data :
EXP: Run Group A, Fall2018 data with inbending configuration (using FD and CD particles)
Sim: TWOPEG event generator is used (available on Jlab's OSG portal)

Physics Analysis and Methods

Preliminary Results

$>$ Conclusions

Physics Analysis: Two-Pion Channel Cross-Section

(Particle Identification:

- Electron pid cuts ∇
- Hadron pid cuts ∇
* Event Selection ∇
- Cross-Section Calculations (In progress)

Corrections

- Energy loss, Momentum, $\Delta P \nabla$
- Detector Efficiency from Experimental Data \square
- Smearing of MC Data \square

Holes Filling ∇

$$
\text { ep-->e'p' } \pi^{+} \pi^{-}
$$

© Background Subtraction $\sqrt{ }$
Bin Centering Corrections, Error Analysis (Systematic Uncertainties) X
Pass2 Data Analysis 区

```
Exp. Data: - Using Run Group A, Fall2018 data with inbending configuration (pass1), runs same as ongoing Inclusive analysis - The beam energy is 10.6041 GeV
\(-1.3 \mathrm{GeV} / \mathrm{c}<\mathrm{W}<2.5 \mathrm{GeV} / \mathrm{c} \& 1.5 \mathrm{GeV}^{2} / \mathrm{c}^{2}<\mathrm{Q}^{2}<10.5 \mathrm{GeV}^{2} / \mathrm{c}^{2}\)
```

Simulations: - TWOPEG event generator is used (gemc 4.4.2, coatjava 6.5.6.1) (pass1)

Particle Identification

Electron pid cuts:

- Electron must have negative charge -1
- Event-builder electron pid cut
- Momentum of electron > 1.5 GeV
- The electron is detected in forward detector
- Chi-square pid cut
- EC outer vs EC inner Cut
- CC Number of Photoelectron Cut
- Z component of the vertex position cut around target
- 3.5 sigma cut on Sampling Fraction
- Preshower calorimeter fiducial cuts:
(triangular and inner circular)
- Drift chambers fiducial cuts:
(triangular and inner circular)
- 1.3 GeV < W < 2.5 GeV
- $1.5 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<10.5 \mathrm{GeV}^{2}$

Hadron pid cuts:

- Event-builder pid cuts for proton, π^{+}and π^{-}
- Delta t cuts for proton, pip and pim

$$
\Delta t=\frac{l_{S C}}{\beta \cdot c}-t_{S C}+\text { vertex time }
$$

where, $\beta=\sqrt{\frac{p^{2}}{m^{2}+p^{2}}}$,
vertex time $=t_{S C}^{e}-\frac{l_{S C}^{e}}{c}$,
$l_{S C}, l_{S C}^{e}$ are length of path from vertex to $S C$ for hadron, electron,
$t_{S C}, t_{S C}^{e}$ are time measured by SC for hadron, electron,
c is the speed of light.

- Momentum of FTOF particle $>0.4 \mathrm{GeV}$
- Momentum of CTOF particle $>0.2 \mathrm{GeV}$
- Chi-Square pid cuts
- Difference between vertex position of hadron and electron cut
- DC Fiducial cuts

Two-Pion Events Selection: MMSQ Cuts on Experimental Data

We use Missing Pim topology out of 4 different topologies in this reaction Channel: $e\left(p, p^{\prime} \pi^{+} X\right) e^{\prime}\left(\right.$ Missing $\left.\pi^{-}\right)$

Two-Pion Events Selection: MMSQ Cuts on MC Data

We use Missing Pim topology out of 4 different topologies in this reaction Channel: $e\left(p, p^{\prime} \pi^{+} X\right) e^{\prime}\left(M i s s i n g ~ \pi^{-}\right)$:

Two-Pion Channel Cross-Section Extraction

Where:
$\Delta \mathrm{N}, \mathrm{Q}$ are no of two-pion events inside 7-differential bin and charge on faraday cup with full an empty target, A, E, R are correction factors, $\Delta W, \Delta Q^{2}$ are kinematical bins, L is luminosity, $\Delta T=\Delta M_{\rho \pi+} \Delta M_{\pi+\pi-} \Delta\left(-\cos \left(\theta_{\pi-}\right)\right) \Delta \varphi_{\pi-} \Delta \alpha_{\pi-}$ is an element of the hadronic 5 -dimensional phase space

1) $M_{\pi-\pi^{+}}, M_{\pi+p^{\prime},}, \theta_{\pi-,} \varphi_{\pi-}$ and $\alpha_{(\text {рт- })\left(p^{\prime} \pi^{+}\right)}\left(\right.$ie. $\left.\alpha_{\pi-}\right) \quad\left[\pi-, \pi+, p^{\prime}\right]$
2) $M_{p^{\prime} \pi+}, M_{\pi+\pi-2}, \theta_{p^{\prime}}, \varphi_{p^{\prime}}$ and $\alpha_{(\text {pp')((T+ா-)}}\left(\right.$ ie. $\left.\alpha_{p^{\prime}}\right) \quad\left[p^{\prime}, \pi-, \pi+\right]$
3) $M_{\pi+\pi--}, M_{\pi-p^{\prime}}, \theta_{\pi+}, \varphi_{\pi+}$ and $\alpha_{(p \pi+)\left(p^{\prime} \pi-\right)}$ (ie. $\left.\alpha_{\pi+}\right)\left[\pi-, \pi+, p^{\prime}\right]$

Binning:

- 24 W bins
- $8 Q^{2}$ bins
- 6 invariant mass bins
- 10θ bins
- 6φ bins
- 8 abins
- Total: 24 * 8 * 6 * 6 * 10 * 6 * $8=3,317,760$

Two-Pion Channel Cross-Section Extraction

Electron Scattering Cross-Section:

$$
\frac{d^{7} \sigma_{e}}{d W d Q^{2} d M_{P_{\pi}+} d M_{\pi+\pi-} d \Omega d \alpha_{\pi-}}=\frac{1}{A \cdot E \cdot R} \frac{\left(\frac{\Delta N_{\text {full }}}{Q_{\text {full }}}-\frac{\Delta N_{\text {empty }}}{Q_{\text {empty }}}\right)}{\Delta W \Delta Q^{2} \Delta \tau L}
$$

Hadronic Cross-Section:

$$
\frac{d^{5} \sigma_{v}}{d M_{P_{\pi+}} d M_{\pi+\pi-} d \Omega d \alpha_{\pi-}}=\frac{1}{\Gamma_{v}} \frac{d^{7} \sigma_{e}}{d W d Q^{2} d^{5} \tau} \quad Q^{2}=-q^{4} q_{\mu}
$$

Single Differential Cross-Section: $\frac{d \sigma_{v}}{d M_{\pi+\pi-}}=\int \frac{d^{5} \sigma_{v}}{d M_{P_{\pi+}+} d M_{\pi+\pi-} d \Omega d \alpha_{\pi-}} d M_{P_{\pi+}} d \Omega d \alpha_{\pi-}$
$Q_{\text {full }}=0.0251 \mathrm{C}, \mathrm{Q}_{\text {empty }}=0.0024075 \mathrm{C}$
$\Delta \mathrm{W}=0.0025 \mathrm{GeV}$
$\Delta \mathrm{Q}^{2}=0.5 \mathrm{GeV}^{2}$ for bin $3.0-3.5 \mathrm{geV}{ }^{2}$

$R=$ Radiative Correction Factor
$\boldsymbol{\Gamma}_{v}=$ virtual Photon Flux
A = Acceptance from Simulated data

> In Progress
> Corrections: Energy loss, Momentum, Background (Implemented)
> $\mathrm{E}=$ Single Particle Efficiency Correction Factors (In progress)
> In Future: Bin centering corrections, Error Analysis, Pass2..

Nine 1-Differential Experimental Yields

Using four vectors of the particles survived after all the cuts and event selection process

These 9 are most useful variables for extraction of reaction amplitudes in JM Model developed by V.I. Mokeev

Corrections

Energy loss correction for proton : Using MC data: separate for FD/CD and binning in theta and momentum, polynomial fit in both momentum and theta

Uncorrected

 Corrected

- Energy loss corrections are applied for pip and pim as well
- Energy loss corrections are up to 5.80%

We apply the momentum corrections provided by the momentum correction task force : https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_Corrections\#tab=Correction_Code

ΔP corrections: CD Proton

Procedure:

Note: Similar corrections are applied for all three hadrons (FD/CD)

- We take TwoPion events with background subtracted
- We calculate $\Delta \mathrm{P}$ the difference between reconstructed (measured) and reconstructed (missing) particle momentum in different bins based on momentum , phi and FD/CD

Fig: $\Delta \mathrm{P}$ vs P for CD protons

Radiative Correction Factors

Acceptance Correction Factors

Single Particle Efficiency Correction Factors: Pim

For each 3-D (momentum, theta, phi) bins, we take integral of background subtracted signals and take:

Single Particle Efficiency Correction Factors : Pim

Smearing MC Data to Match Resolutions

6.2 Matching the experimental resolution

Realistic resolutions have been implemented for the momentum, θ and ϕ of the reconstructed electrons and pions to match the experimental resolutions. The applied resolution functions, which were provided by F.X. Girod based on p, θ and ϕ of any charged particle are given by:

$$
p_{S 1}=0.0184291-0.0110083 \cdot \theta+0.00227667 \cdot \theta^{2}-0.000140152 \cdot \theta^{3}+3.07424 \cdot 10^{-6} \cdot \theta^{4}
$$

$$
\begin{gathered}
p_{R}=0.02 * \sqrt{\left(p_{S 1} \cdot p\right)^{2}+(0.02 \cdot \theta)^{2}} \\
\theta_{R}=2.5 \cdot \sqrt{\left.\left((0.004 \cdot \theta+0.1) \cdot\left(p^{2}+0.13957 \cdot 0.13957\right) /\left(p^{2}\right)\right)^{2}\right)} \\
\phi_{S 1}=0.85-0.015 \cdot \theta, \quad \phi_{S 2}=0.17-0.003 \cdot \theta \\
\phi_{R}=3.5 \cdot \sqrt{\left(\phi_{S 1} \cdot \sqrt{p^{2}+0.13957 \cdot 0.13957} /\left(p^{2}\right)\right)^{2}+\phi_{S 2}^{2}} \\
\phi_{\text {new }}=\phi+\phi_{R} \cdot g \text { Random } \rightarrow \operatorname{Gaus}(0,1) \\
\theta_{\text {new }}=\theta+\theta_{R} \cdot g \text { Random } \rightarrow \operatorname{Gaus}(0,1) \\
p_{\text {new }}=p+p_{R} \cdot g \text { Random } \rightarrow \operatorname{Gaus}(0,1) \cdot p
\end{gathered}
$$

${ }_{13}$ The functions are valid for the in-bending and out-bending torus field.
https://www.jlab.org/HallB/shifts/admin/paper_reviews/2022/pip_gpd_ analysis_note_v3-7074513-2022-03-10-v7.pdf

Smearing MC Data to Match Resolutions

Proton Momentum:

FD : $[0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,4.0,5.0]$
CD : $\quad[0.4,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.6,2.2]$
Pip Momentum:
FD : $[0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,4.0,5.0]$
CD : [0.2, $0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.7]$
Pim Momentum :
FD : $[0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,3.2,3.4,4.0,5.0]$
CD : [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.4, 1.9]
Electron: factor $=0.4$ applied (First try was 0.75^{*} FX's function for all 4 particles)

Smearing MC Data to Match Resolutions

FD Pim (excl topo): mPip MMSQ Background Subtracted Signal Fits

Momentum bins:

[0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 4.0, 5.0]

Background Subtraction

MMSQ W $=(1.75,1.8] \mathrm{GeV} \mathrm{Q}^{2}=(4.2,5.0] \mathrm{GeV}^{2}$

MMSQ $W=(1.75,1.8] \mathrm{GeV}^{2}=(4.2,5.0] \mathrm{GeV}^{2}$

Background / Total in Each W-Q² bin pass1 data

Background / Total in Each W-Q ${ }^{2}$ bin pass2 data

W (GeV/c)

Exp Data: W-Q² Distributions for ep->e'p'pi+ Events

Nine 1-Dfifferential Normalized Yields : Pass1 and Pass2

Holes Filling:

- CLAS12 detector does not fully cover 4π angular area
- The acceptance factor on those holes is zero
- Design constraint of detector system leads to some physical gaps called holes
- We need to fill those holes by using scaled generated yields

Pass1

$\Theta_{\pi^{+}}$

W- Q^{2} bin for these Normalized Yields: $1.75 \mathrm{GeV}<\mathrm{W}<1.80 \mathrm{GeV}, 4.2 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<5.0 \mathrm{GeV}^{2}$

Conclusions

107 Particle identification cuts have been implemented, refinement and adjustments will be made as needed

Based on missing π^{-}topology, two-pion events are selected, and experimental yields are extracted

Using TWOPEG event generator, acceptance correction factor are applied, and remaining holes are filled
Energy/momentum corrections, radiative effect corrections, background subtractions are applied
Smearing MC data, Detector efficiency studies are in progress, bin centering/migration corrections are next in line
Systematic studies are needed to quantify uncertainties and extract precise Cross-Sections

Very preliminary evaluations of Pass 2 data indicate promising results, this needs further systematic checks and refinements to conclude

Thank You!

Background Selection

Experimental Data

MMSQ mPip (Exp)

Simulated Data

CM System
return (_prot_Vect3.Dot(_pip_Vect3.Cross(_pim_Vect3)));

Background Selection

Background Subtraction

MMSQ W $=(1.75,1.8] \mathrm{GeV}^{2}=(4.2,5.0] \mathrm{GeV}^{2}$

Background / Total in Each W-Q ${ }^{2}$ bin pass1 MC data

Background / Total in Each W-Q2 bin pass2 MC data

Back up Slide: Virtual Photon Flux

$$
\frac{\mathrm{d}^{5} \sigma_{v}}{\mathrm{~d}^{5} \tau}=\frac{1}{\Gamma_{v}} \frac{\mathrm{~d}^{7} \sigma_{e}}{\mathrm{~d} W \mathrm{~d} Q^{2} \mathrm{~d}^{5} \tau},
$$

where Γ_{v} is the virtual photon flux given by

$$
\Gamma_{v}\left(W, Q^{2}\right)=\frac{\alpha}{4 \pi} \frac{1}{E_{\text {beam }}^{2} m_{p}^{2}} \frac{W\left(W^{2}-m_{p}^{2}\right)}{\left(1-\varepsilon_{T}\right) Q^{2}}
$$

Here α is the fine structure constant $(1 / 137), m_{p}$ the proton mass, $E_{\text {beam }}=10.6 \mathrm{GeV}$ the laboratory energy of the incoming electron beam, and ε_{T} the virtual photon transverse polarization given by

$$
\varepsilon_{T}=\left(1+2\left(1+\frac{\nu^{2}}{Q^{2}}\right) \tan ^{2}\left(\frac{\theta_{e^{\prime}}}{2}\right)\right)^{-1}
$$

where $\nu=E_{\text {beam }}-E_{e^{\prime}}$ is the virtual photon energy, while $E_{e^{\prime}}$ and $\theta_{e^{\prime}}$ are the energy and the polar angle of the scattered electron in the lab frame, respectively.

$$
\begin{aligned}
& e+p(\text { uud }) \rightarrow \Delta^{++}(u u u)+\pi\left(d u \overline{)}+e^{\prime} \rightarrow p(u u d)+\pi^{+}\left(u^{-} d\right)+\pi(d u \overline{)})+e^{\prime}\right. \\
& e+p(\text { uud }) \rightarrow \Delta^{0}(\text { udd })+\pi^{+}\left(u^{-} d\right)+e^{\prime} \rightarrow p(\text { uud })+\pi^{+}\left(u^{-} d\right)+\pi(d u \overline{)})+e^{\prime} \\
& e+p(u u d) \rightarrow \rho^{0}\left(\left(u^{-} d+d u \bar{u}\right) / \sqrt{ } 2\right)+p(u u d)+e^{\prime} \rightarrow p(u u d)+\pi^{+}\left(u^{-} d\right)+\pi(d u \bar{u})+e^{\prime}
\end{aligned}
$$

Backup Slide : Hole Filling Process

- In simulation:

1. $\mathrm{h} 5-\mathrm{ST}=$ Thrown yield
2. $\mathrm{h} 5-\mathrm{SR}=$ Thrown yield reconstructed in simulated detector
3. $\mathrm{h} 5-\mathrm{SA}=$ Acceptance $(\mathrm{h} 5-\mathrm{SA}=\mathrm{h} 5-\mathrm{SR} / \mathrm{h} 5-\mathrm{ST})$
4. $\mathrm{h} 5-\mathrm{SC}=$ Acceptance corrected yield. (h5-SC=h5-SR/h5-SA)
5. h5-SH = Hole yield (h5-SH=h5-ST-h5-SC)
6. $\mathrm{h} 5-\mathrm{SF}=$ Yield in full (PS) $(\mathrm{h} 5-\mathrm{SF}=\mathrm{h} 5-\mathrm{SC}+\mathrm{h} 5-\mathrm{SH})$

- In experiment:

1. $\mathrm{h} 5-\mathrm{ER}=$ Natural yield reconstructed in actual detector.
2. $\mathrm{h} 5-\mathrm{EC}=$ Acceptance corrected yield ($\mathrm{h} 5-\mathrm{EC}=\mathrm{h} 5-\mathrm{ER} / \mathrm{h} 5-\mathrm{SA}$)
3. $\mathrm{h} 5-\mathrm{EH}=$ Hole yield. (h5-EH='sf'xh5-SH)
4. $\mathrm{h} 5-\mathrm{EF}=$ Yield in full $(\mathrm{PS})(\mathrm{h} 5-\mathrm{EF}=\mathrm{h} 5-\mathrm{EC}+\mathrm{h} 5-\mathrm{EH})$

Source: Arjun Trivedi (PhD Thesis) Measurement of New Observables from the $\pi^{+} \pi^{-}$Electroproduction off the Proton

Obtain 'sf' as the ratio of total yield in h5-EC and total yield in h5-SC. Note that for both, the total yield is integrated over h5-SC's PS bins that are filled (i.e. their bin content >0).

$$
\mathrm{sf}=\frac{\sum_{i=1}^{N} \mathrm{~h} 5-\mathrm{EC}_{i}}{\sum_{i=1}^{N} \mathrm{~h} 5-\mathrm{SC}_{i}}
$$

where $\mathrm{i}=1, \ldots, \mathrm{~N}$ are the filled PS bins filled in h5-SC.

MMSQ mPip with Pim mom=\{1.8, 2.0$]^{0.2} \mathrm{GeV}$

MMSO mPip with Pim mom=(2.0, 2.2] GeV

| |
| :--- | :--- | :--- | :--- |

FD Pim (excl topology): mPip MMSQ, Background Subtracted Data
Momentum bins:
[0.3, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 4.0, 5.0]

Back up Slide: Corrections

Energy loss correction for pip : Using MC data

Energy loss correction for pim : Using MC data

Δ p vs p pim $\Theta>27$ (deg) FD

Energy Loss Corrections: CD Proton

