Beam Spin Asymmetries of Deeply Virtual Exclusive ρ⁰ Production at CLAS12

Nicholaus Trotta and Andrey Kim

University of Connecticut

Motivation

• 4 chiral-even GPDs: $H, E, \tilde{H}, \tilde{E}$ • 4 chiral-odd GPDs: $H_T, E_T, \tilde{H}_T, \tilde{E}_T$

	Meson	GPD flavor
${ ilde H},{ ilde E}$ _		composition
	π^+	$\Delta u - \Delta d$
	π^0	$2\Delta u + \Delta d$
H_T, E_T	η	$2\Delta u - \Delta d$
H, E	$ ho^0$	2u+d
	ρ^+	u-d
	ω	2u-d

π^+ Motivation lepton ρ^{o} scattering plane π v* po decay plane $\frac{d^4\sigma}{dQ^2\;dx_B\;dt\;d\Phi} = \Gamma(Q^2, x_B, E)$ N p^o production plane Φ εθ N $\frac{1}{2\pi} \left\{ \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} \right\}$ $+ \epsilon \frac{d\sigma_{TT}}{dt} \cos(2\Phi) + \sqrt{2(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos(\Phi)$ $+\lambda\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{LT'}}{dt}\sin(\Phi)\}$

where λ is the helicity state of the incident electron beam

Motivation

$$\frac{d^{4}\sigma}{dQ^{2} dx_{B} dt d\Phi} = \Gamma(Q^{2}, x_{B}, E)$$

$$\frac{1}{2\pi} \left\{ \frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right\}$$

$$BSA = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} \propto A_{LU}^{\sin\phi} \sin\phi$$

$$A_{LU}^{\sin\phi} = \sqrt{2\epsilon(1-\epsilon)} \frac{\sigma_{LT'}^{\sin\phi}}{\sigma_{0}}$$

Event Selection

Data Sets:

- RGA's Fall 2018 Inbending and Outbending
- Standard RGA's particle ID
- RGA's Momentum Corrections

Channel:

- ер -> еρ⁰р ->еπ⁺π⁻(р)
 - The outgoing proton is identified by missing mass techniques
 - ρ^0 decays into $\pi^+\pi^-$
 - The electron, and pions are found using forward detector
 - DIS cuts: Q² > 2 GeV²,W > 2 GeV

Event Selection: Exclusivity

Fitting ρ^0 example

Invariant Mass of π + π -

 $F(M_{\pi\pi}) = N_{\rho}F_{\rho}^{bw} + N_{f2}F_{f2}^{bw} + N_{bg}F_{bg}$

1D Bins in -t

- 6 bins in -t
- 9 equidistance bins in ϕ
- Events were divided into either positive or negative helicity
- 108 invariant mass were fitted
- This was done independently for both inbending and outbending
- $N^+_{\ \rho o}$ and $N^-_{\ \rho o}$ are the amplitude of ρ^o fits in positive and negative helicity bins

$$BSA = \frac{1}{P_b} \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-}$$

 P_{b} is the average beam polarization

1D Bins in -t: Invariant Mass Fits (-t bin 1)

1D Bins in -t: $\sigma_{\rm LT}/\sigma_0$ for both inbending and outbending

$$BSA = A_{LU} \sin \phi$$
 $A_{LU}^{\sin \phi} = \sqrt{2\epsilon(1-\epsilon)} rac{\sigma_{LT'}^{\sin \phi}}{\sigma_0}$

3D Bins in Q^2 , x_b , and -t

- 5 bins in Q^2 and x_b
 - Further divided into -t bins
 - \circ 9 equidistance bins in ϕ
 - Events were divided into either positive or negative helicity
 - 135 invariant mass were fitted for both inbending and outbending
- $N^{+}_{\rho o}$ and $N^{-}_{\rho o}$ are the amplitude of ρ^{o} fits in positive and negative helicity bins

$$BSA = \frac{1}{P_b} \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-}$$

3D Bins: BSA Inbending

 $BSA = A_{LU}\sin\phi$

3D Bins: BSA Outbending

 $BSA = A_{LU}\sin\phi$

3D Bins: $\sigma_{\rm LT}/\sigma_0$ for both inbending and outbending

Monte Carlo Simulation

- Generator
 - A phase space generator was created to simulate the reaction ep \rightarrow epp^o \rightarrow ep $\pi^{+}\pi^{-}$
 - $\circ~$ A breit wigner was used to simulate ρ°
 - \circ μ (mean value) = 0.755 GeV, Γ (full width half mass) = 0.146 GeV
- The generated data was passed through GEMC to be reconstructed
- Weights were created to match the reconstructed MC to the reconstructed data

Simulation: MC Reconstructed vc Data Reconstructed

Systematic Uncertainty

15

2.5

2

• 1D binning {-t}

art/a

0.2

0.

-0.1

-0.2

-0.3

-0.4

05

• Gray bands show the total systematic uncertainties

Systematic Uncertainty

• 3D binning $\{Q^2, x_b, -t\}$

-01

• Gray bands show the total systematic uncertainties

1.6 -t [GeV²]

-t [GeV2]

Outlook and Conclusion

- Our results found that Chiral Odd GPDs play a significant role in vector meson production
- Results are significant in -t<1 GeV² (the region with dominant GPDs contributions)
- Spin density matrix elements (SDMEs)

Thank You!

Maximum Likelihood Estimation Method (MLM)

- Can be used to to extract the modulations as an alternative method to the background subtraction
 - \circ Allows for extraction of the modulations without binning in the azimuthal angle, ϕ
 - No assumptions are made about the distributions of the parameters
- Using the following yield for polarized beam and unpolarized target

$$dN(\vec{\theta}, \vec{x}, h_b, h_t) = L\eta(\vec{x})\sigma_{UU}(\vec{x})(1 + A_{UU}(\vec{\theta})\vec{x}) + A_{LU}(\vec{\theta})\vec{x}))$$

- Need to find the minimum of the negative log of the likelihood function
 - Assuming that net polarization is zero, then the unpolarized terms can be summed over a monte carlo

$$-\log(L(\vec{\theta})) = N_{data} \log(\sum_{i}^{N_{MC}} 1 + A_{UU}^{\cos\phi} \cos(\phi) + A_{UU}^{\cos2\phi} \cos(2\phi)) - \sum_{i}^{N_{data}} \log(1 + A_{UU}^{\cos\phi} \cos(\phi) + A_{UU}^{\cos2\phi} \cos(2\phi) + A_{LU}^{\sin\phi} \sin(\phi))$$

1D Bins: MLM vs χ^2

24

3D Bins: MLM vs χ^2

Dashed line = 0.0

