

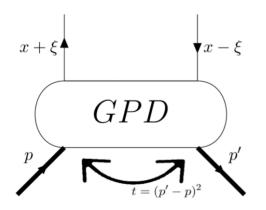
Exclusive Measurement of Deeply Virtual Compton Scattering on the Neutron: Beam spin asymmetries

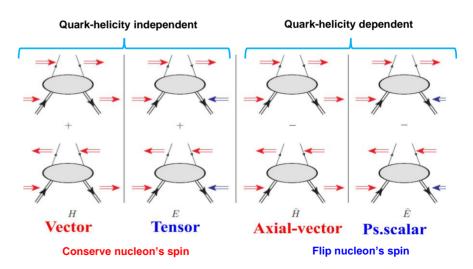
Adam HOBART, Silvia Niccolai

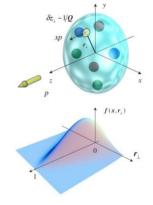
CLAS collaboration meeting 12-15 March 2024

Laboratoire de Physique des 2 Infinis

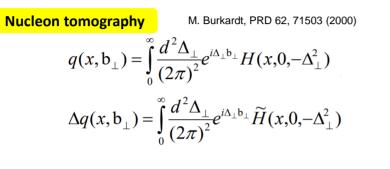
- Analysis started mid 2020 (not all data were available)
- Analysis went to review May 2022
- Review ended October 2023
- Ad-hoc review of the paper is ongoing. Target journal PRL

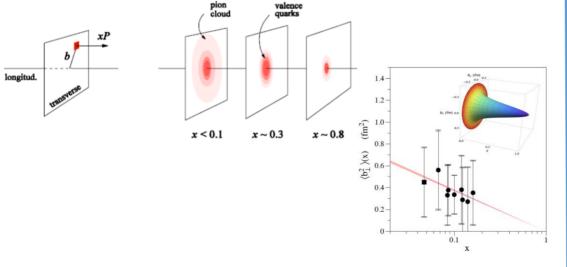

GPDs


- QCD at low energies: non perturbative regime
 - Need structure functions to describe nucleon structure

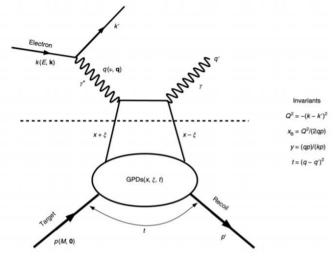

GPDs

Correlation of transverse position and longitudinal momentum of partons in the nucleon & the spin structure - through Ji's sum rule x. Ji, Phy.Rev.Lett.78,610(1997)


- GPDs can be accessed through exclusive leptoproduction reactions
- At leading order QCD, chiral-even (quark helicity is conserved), quark sector: 4 GPDs for each quark flavor H, \tilde{H}, E and \tilde{E}
- GPDs depend on x, ξ and t = (p' p)²



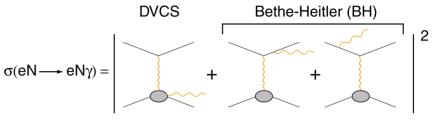
• GPDs: Fourier transforms of non-local, non-diagonal QCD operators



R. Dupré, M. Guidal, M.Vanderhaeghen, PRD95, 011501 (2017)

Quark angular momentum X. Ji, Phy.Rev.Lett.78,610(1997) $\frac{1}{2}\int_{-1}^{1} x dx (H(x,\xi,t=0) + E(x,\xi,t=0)) = J = \frac{1}{2}\Delta\Sigma + \Delta L$ Nucleon spin: $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta L + \Delta G$

- The intrinsic spin of the quarks can not explain the origin of the spin of the nucleon (nucleon Spin Crisis)
- Intrinsic spin of the gluons
- GPDs: quantify the contribution of orbital angular momentum of quarks to the nucleon spin


Deeply Virtual Compton Scattering of leptons off nucleons

- DVCS allows access to 4 complex GPDs-related quantities:
 - Compton Form Factors (x, ξ,t) (CFFs)

$$\mathcal{H} = \sum_{q} e_{q}^{2} \left\{ i \, \pi \left[H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \right] + \mathcal{P} \int_{-1}^{1} dx H^{q}(x,\xi,t) \left[\frac{1}{\xi-x} - \frac{1}{\xi+x} \right] \right\}$$

 x can not be accessed experimentally by DVCS: Models needed to map the x dependence

BH is purely electromagnetic and parametrised by FFs

- Experimentally measured observables:
 - Sensitive to the DVCS-BH interference part (linear in CFFs)
 - Should have: Beam polarized and/or target polarized
 - Access to a combinations of CFFs
 - The separation of CFFs requires the measurement of several observables
 - Depending on the target (proton or neutron): different sensitivity to the CFFs (GPDs)
 - The flavor separation of GPDs requires measurements on both nucleons

 $(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E\big)_{p}(\xi,\xi,t) - \big(H,E\big)_{n}(\xi,\xi,t) \Big]$ $(H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E\big)_{n}(\xi,\xi,t) - \big(H,E\big)_{p}(\xi,\xi,t) \Big]$

Deeply Virtual Compton Scattering: physics observables and their link to CFFs

Polarized beam, unpolarized taget

 $\Delta \sigma_{LU} \approx \sin(\phi) \,\Im \big\{ F_1 \mathbf{H} + \xi (F_1 + F_2) \widetilde{\mathbf{H}} - k \,F_2 \mathbf{E} + \dots \big\} \stackrel{\mathsf{Exp. }1}{\approx} \frac{1}{Pol.} \times \frac{N^+ - N^-}{N^+ + N^-}$

Unpolarized beam, polarized target

$$\Delta \sigma_{UL} \approx \sin(\phi) \Im \left\{ F_1 \,\widetilde{H} + \xi (F_1 + F_2) \left(H + \frac{x_b}{2} E \right) - \xi k \, F_2 \widetilde{E} \right\}$$

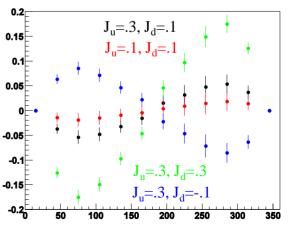
polarized beam, longitudinal polarized target

$$\Delta \sigma_{LL} \approx (A + B\cos(\phi)) \Re \{F_1 \,\widetilde{H} + \xi (F_1 + F_2) \left(H + \frac{x_b}{2} E\right) + \dots \}$$

unpolarized beam, transverse polarized target $\Delta \sigma_{UT} \approx \cos(\phi) \sin(\phi_s - \phi) \Im\{k(F_2 H - F_1 E) + ...\}$

DVCS with an unpolarized deuterium target :

- Determination of Ji sum rule
 - Contribution of orbital angular momentum of quarks to the nucleon spin


$$\frac{1}{2}\int_{-1}^{1} x dx (H(x,\xi,t=0) + E(x,\xi,t=0)) = J = \frac{1}{2}\Delta\Sigma + \Delta L$$

- Scattering off proton (pDVCS): GPD H
 - Quantify medium effects
 - Essential for the extraction of BSA of a "free" neutron (de-convoluting medium effect via comparison with DVCS on hydrogen target)

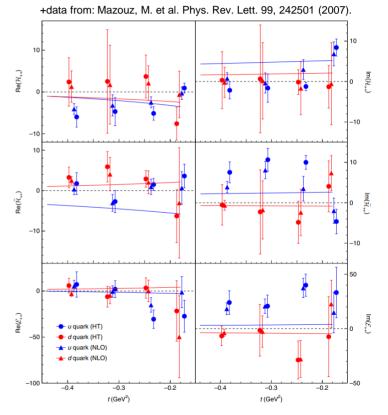
Different contributions from F_1 and F_2 for the different nucleons

Observable	Proton	Neutron
$\Delta\sigma_{LU}$	$\Im \{ \boldsymbol{H_p}, \widetilde{H}_p, E_p \}$	$\Im \{H_n, \widetilde{H}_n, \boldsymbol{E_n}\}$
$\Delta \sigma_{UL}$	$\Im\{H_p, \widetilde{H}_p\}$	$\Im\{H_n, E_n\}$
$\Delta\sigma_{LL}$	$\Re\{H_p, \widetilde{H}_p\}$	$\Re\{\boldsymbol{H_n}, E_n\}$
$\Delta \sigma_{UT}$	$\Im\{H_p, E_p\}$	ℑ{ H _n }


Model predictions (VGG) for different values of quarks' angular momentum

Scattering off neutron (nDVCS): GPD E

- Previous pioneering measurement of nDVCS (Jlab Hall A @ 6 GeV) ٠
 - Beam-energy « Rosenbluth » separation of nDVCS CS using an LD2 target and two different beam energies
 - First observation of non-zero nDVCS CS •



100

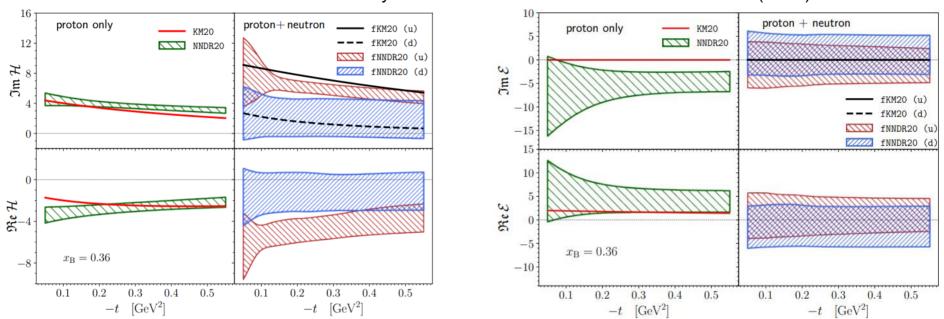
200

φ (°)

300

Benali M., Desnault C., Mazouz M. et al. Nat. Phys. 16, 191-198 (2020)

Q²=1.9 GeV² and x_B=0.36



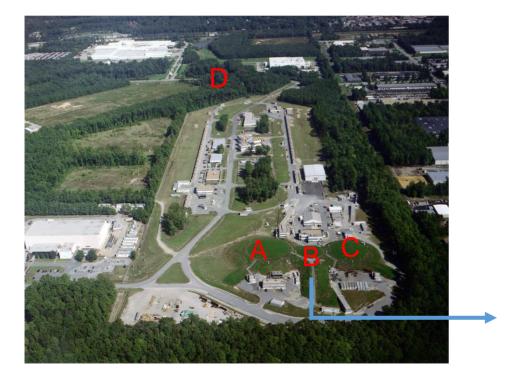
200

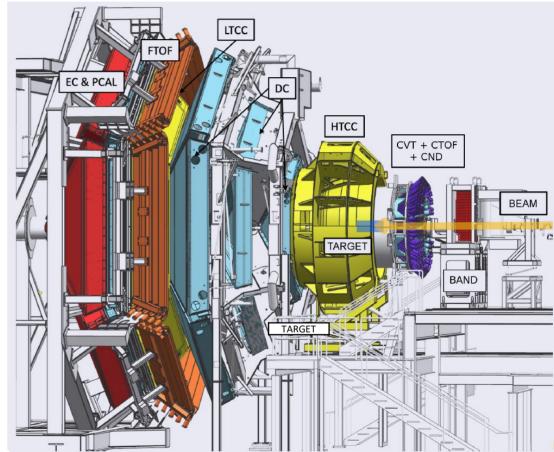
φ (°)

300

100

M. Čuić K. Kumericki et al. PhysRevLett.125.232005 and arxiv 2007.00029 (2020)

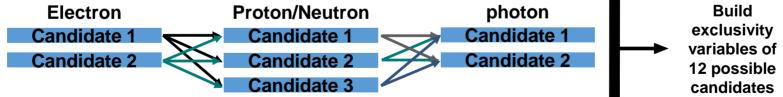

- Proton and neutron data from JLab
- Up and down contributions to CFF H separated
- CFF E flavors are not separated, a significant sign ambiguity!



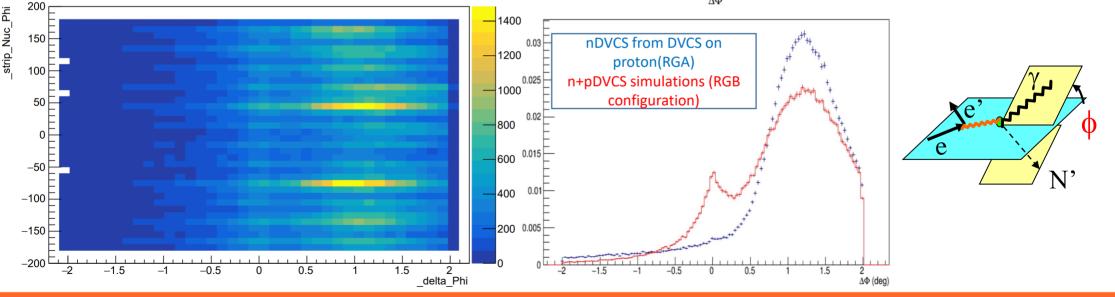
The CEBAF and CLAS at Jefferson Laboratory

Continuos Electron Beam Accelerator Facility

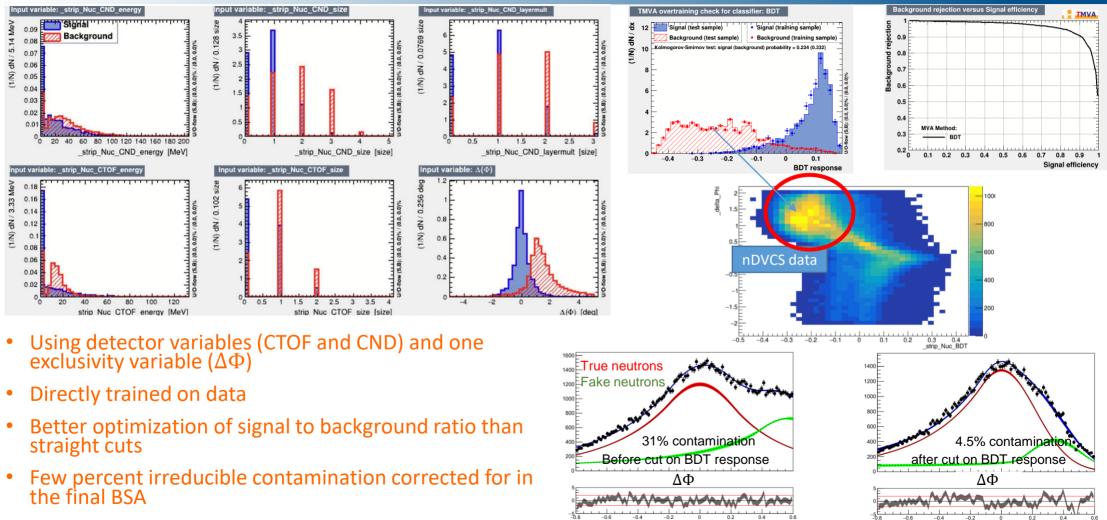
• Up to 12 GeV electrons



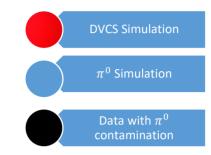
CLAS12

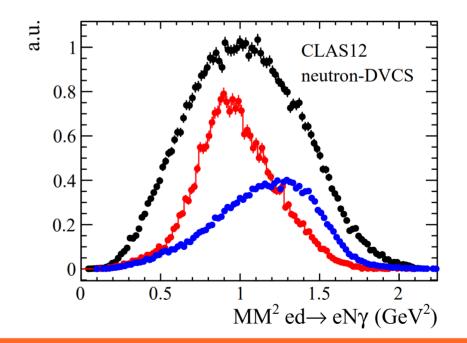

- RGB: A 10.6/10.4/10.2 GeV electron beam
 - With an average polarization of 86%
 - Scattering off an unpolarized Liquid Deuterium target of 5 cm length
- The exclusivity of the event is insured by:
 - Electron detection: HTTC, DC, ECAL
 - Photon detection: EMCAL or FT
 - Proton detection: CVT or FD OR Neutron detection: CND or FD
- For Neutron Detection:
 - Machine Learning techniques are applied to improve the identification and reduce charged particle contamination
- Construct all the possible combinations of final state particles: ed->e'Nγ(Nspec) (N:nucleon)
 - Best candidate in event is selected based on best exclusivity criteria (a multi-dimensional χ2-like variable including exclusivity variables)

- The combination of variables that give the minimum value for the χ2-like variable is supposed to be the best choice for a DVCS event
- This choice coincides at 97% with the option of choosing the highest energy final state particles

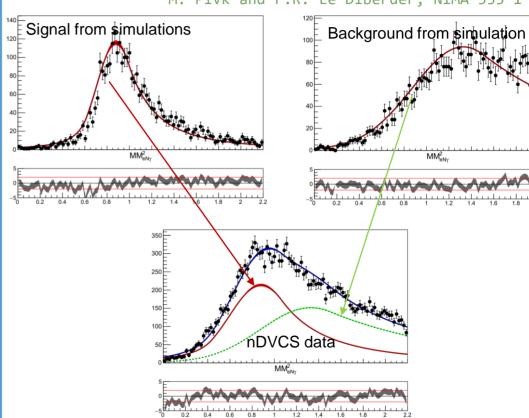


- The tracking of the CVT is neither 100% efficient nor uniform
- In the dead regions of the CVT protons have no associated track and thus can be misidentified as neutrons
- Protons roughly account for more than >40% contamination in the "nDVCS" signal sample. Current approach, based on Machine Learning & Multi-Variate Algorithms:
 - We reconstruct nDVCS from DVCS experiment on proton requiring neutron PID : selected neutron are misidentified protons
 - We use this sample to determine the characteristics of fake neutrons in low- and high-level reconstructed variables
 - Based on those characteristics we subtract the fake neutrons contamination from nDVCS
 - As a « signal » sample in the training of the ML we use $ep \rightarrow en\pi^+$ events from DVCS experiment on proton (RGA)




Improving the neutron selection with ML techniques

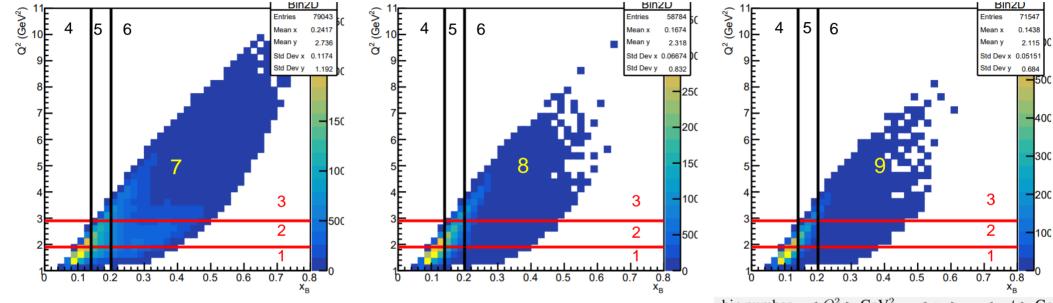
- The nDVCS (pDVCS) final state is selected with the following exclusivity criteria: (N:nucleon)
 - Missing mass
 - ed \rightarrow eN γ X
 - $e N \rightarrow e N \gamma X$
 - $e N \rightarrow e N X$
 - Missing momentum
 - $e d \rightarrow e N \gamma X$
 - ΔΦ, Δt, θ(γ,X)
 - Difference between two ways of calculating Φ and t
 - Cone angle between measured and reconstructed photon
- Exclusivity selection is optimized with a 4-D χ^2 -like distribution including $\Delta \Phi$, Δt , $\theta(\gamma, X)$ and missing mass e N \rightarrow e N X
 - This is the same variable used to select best candidate



π^0 background subtraction

- Subtraction using simulations of the background channel
 - Monte Carlo simulations:
 - GPD-based event generator for DVCS/pi0 on deuterium
 - DVCS amplitude calculated according to the BKM formalism
 - Fermi-motion distribution evaluated according to Paris potential
- 1. Estimate the ratio of partially reconstructed eN $\pi^0(1 \text{ photon})$ decay to fully reconstructed eN π^0 decays in MC
- 2. This is done for each kinematic bin to minimize MC model dependence
- 3. Multiply this ratio by the number of reconstructed eN π^0 in data to get the number of eN $\pi^0(1 \text{ photon})$ in data
- 4. Subtract this number from DVCS reconstructed decays in data per each kinematical bin

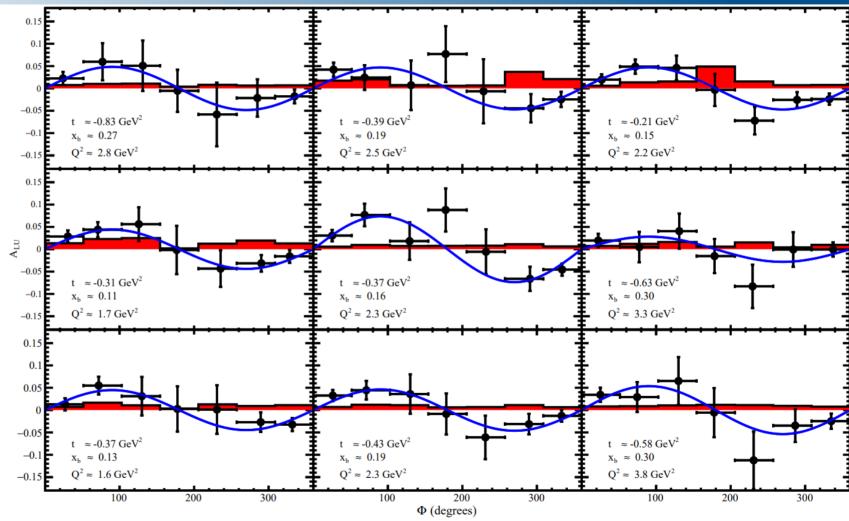
Simulations: $R = \frac{N(eN\pi_{1\gamma}^{0})}{N(eN\pi^{0})}$ Data: $N(eN\pi_{1\gamma}^{0}) = R * N(eN\pi^{0})$ $N(DVCS) = N(DVCS_{recon}) - N(eN\pi_{1\gamma}^{0})$ π^{0} background subtraction is also performed by statistical unfolding of contribution to the missing mass spectrum M. Pivk and F.R. Le Diberder, NIMA 555 1 2005



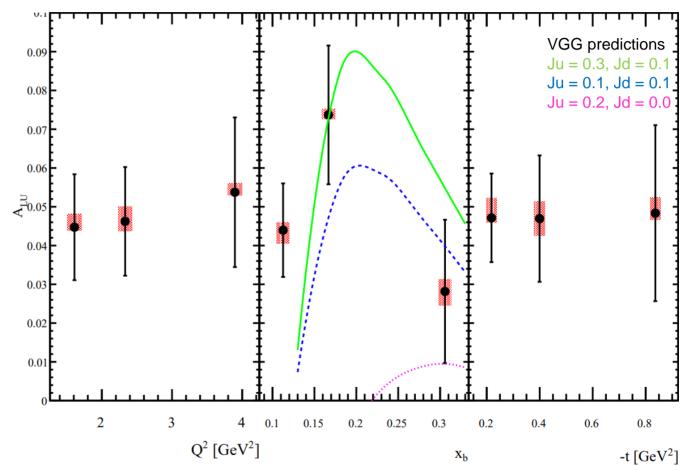
The difference between the estimations of background from both methods is considered as a systematic

CLAS12: nDVCS with an unpolarized deuterium target

First-time measurement of nDVCS with detection of the active neutron

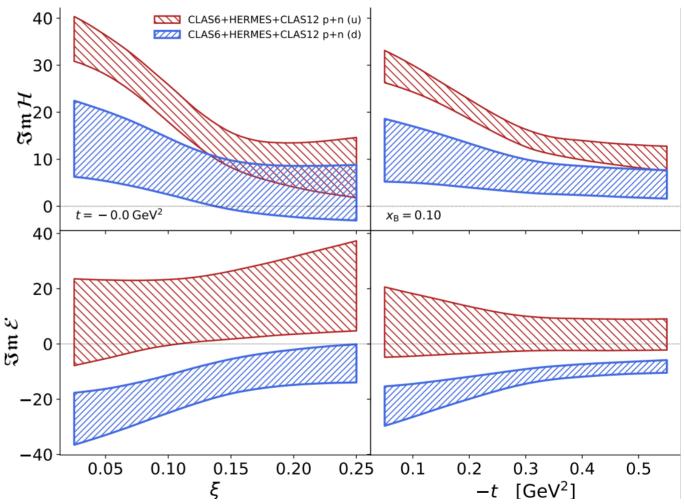

- Compared to the previous experiment, CLAS12 provides :
 - The possibility to scan the BSA of nDVCS on a wide phase space
 - The possibility to reach the high Q^2 high x_b region of the phase space
 - Exclusive measurement with the detection of the active neutron

2			_
		سليتسليت	
0 0.1	0.2 0.3 0.4	0.5 0.6	0.7 0.8 0 x _B
bin number	$< Q^2 > { m GeV^2}$	$\langle x_b \rangle$	$< -t > \mathrm{GeV}^2$
1	1.60973	0.132015	0.388061
2	2.33568	0.199322	0.467386
3	3.92472	0.314797	0.667296
4	1.70901	0.111932	0.324567
5	2.35954	0.167174	0.384192
6	3.29066	0.312552	0.70405
7	2.91918	0.277885	0.832902
8	2.44265	0.185242	0.355265
9	2.16854	0.149355	0.22063


•

CLAS12: nDVCS with an unpolarized deuterium target

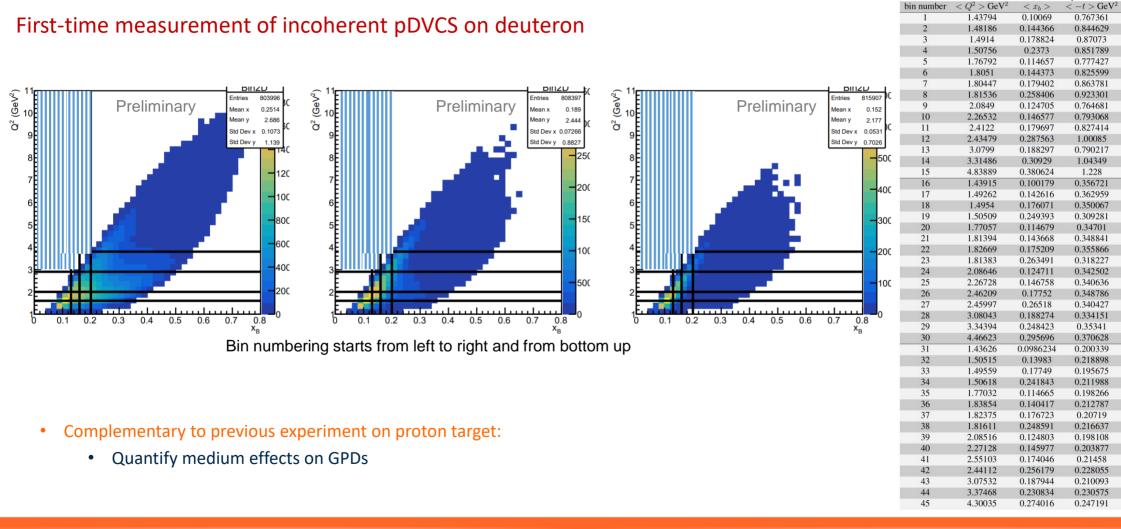
- Observation of positive BSA for nDVCS
- Systematic errors:
 - beam polarization
 - selection cuts
 - background subtraction
 - merging of data sets with different energies
- Statistics is expected to double with remaining scheduled beam time and improvements with reconstruction software (Pass2 data)



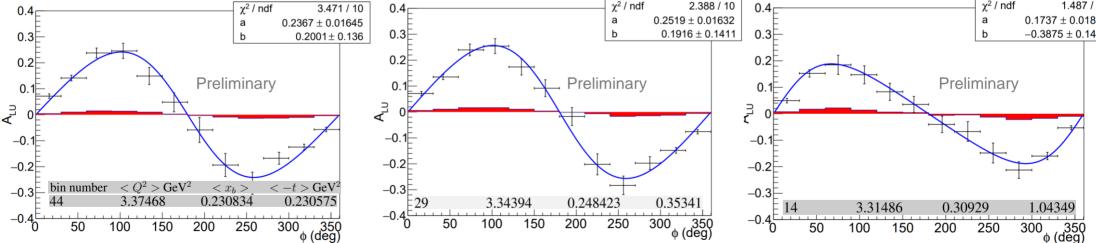
- Observation of positive BSA for nDVCS
- Systematic errors:
 - beam polarization
 - selection cuts
 - background subtraction
 - merging of data sets with different energies
- Statistics is expected to double with remaining scheduled beam time and improvements with reconstruction software (Pass2 data)

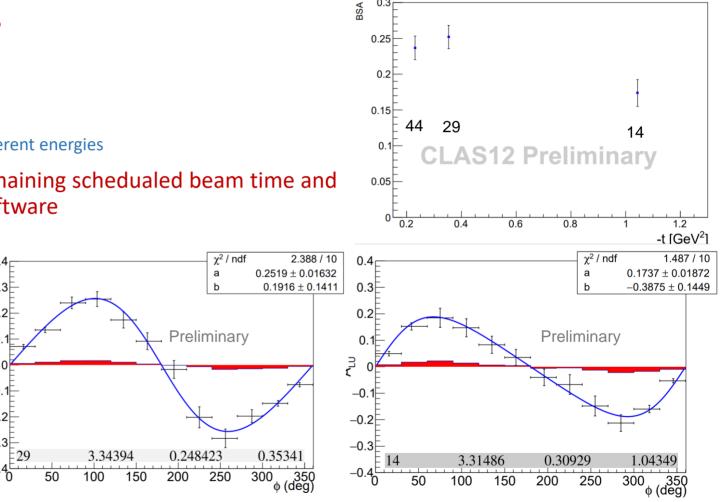
Today on flavor separation

- CFFs are parametrized as neural networks:
 - values at input kinematical variables xB and t
 - values at output representing the imaginary or real parts of CFFs.
- 200 trained neural nets to optimize the statistics
- Proton data from Jlab (including recent results from RGA) and HERMES
- Neutron data from this analysis
- Up and down contributions to CFF H [™] separated
- CFF E flavors are now separated with no sign ambiguity

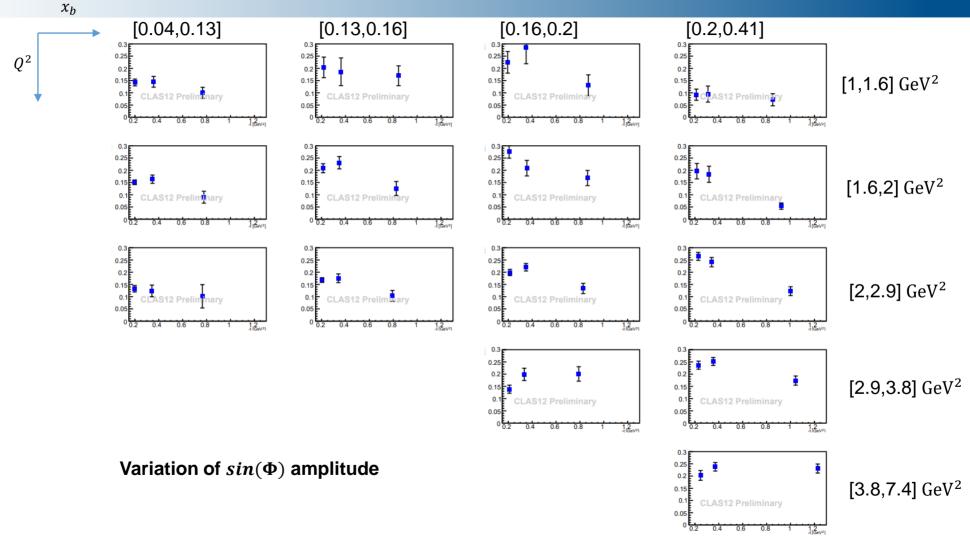


- GPDs are powerful tool to explore the structure of the nucleons and nuclei
 - Nucleon tomography, quark angular momentum, distribution of forces in the nucleon
- Exclusive reactions can provide important information on nucleon structure
 - DVCS via the extraction of GPDs
- CLAS12 offers a wide kinematical reach over which the GPDs dependence on different kinematical variables can be scanned
 - Data to add constraints on GPDs in unexplored regions of the phase space
 - Possibilities to measure new observables using different experimental configurations
 - Flavor separation of GPDs
- Interesting results from incoherent DVCS on deuteron (n and p channels) from CLAS12 data
 - First BSA measurement from neutron-DVCS with tagged neutron: ad-hoc review ongoing
 - First measurement of BSA for proton-DVCS with deuterium target:
 - To be compared to free-proton DVCS BSA measured by CLAS12 (RGA)


CLAS12: pDVCS with an unpolarized deuterium target



CLAS12: pDVCS with an unpolarized deuterium target


- Observation of positive BSA for nDVCS
- Systematic errors include:
 - Error due to beam polarization •
 - Error due to selection cuts •
 - Error due to merging of data sets with different energies

