Measurements of the Cos ϕ and $\operatorname{Cos} 2 \phi$ Moments of the Unpolarized SIDIS π^{+} Cross-section at CLAS12

Richard Capobianco

University of Connecticut

CLAS Collaboration 2024
Linked in
 36

Motivation

- Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments allow us to address questions about the 3D structure of nucleons
- Azimuthal modulations in unpolarized SIDIS cross-section for charged pion electroproduction can give access to the Cahn and Boer-Mulders effects
- Boer-Mulders Effect: Sensitive to the correlation between the quark's transverse momentum and intrinsic transverse spin in an unpolarized nucleon
- Cahn Effect: Sensitive to the transverse motion of quarks inside the nucleon
- A non-zero Boer-Mulders requires quark orbital angular momentum contributions to the proton spin (aspect of the proton missing spin puzzle)

SIDIS Cross-Section and Boer-Mulders

The lepton-hadron Unpolarized SIDIS Cross-Section:

Reaction Studied: $\mathrm{ep} \rightarrow \mathrm{e} \pi^{+}(\mathrm{X})$

Data Collection

CLAS12 Detector

- CLAS12 detector in Hall B at Jefferson Lab
- Upgrade from the CLAS detector
- Enabled the higher energy and statistics for our experiments, not previously accessible
- Data from the Fall 2018 RG-A experiment
- Used a 10.6 GeV polarized electron beam and unpolarized liquid hydrogen target
- Data presented uses forward tracking only

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (ß) and momentum

π^{+}Pion PID - $ß$ vs p

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity ((β) and momentum

Analysis Cuts:

- sIDIS Cuts:
- W > 2 GeV
- $\mathrm{Q}^{2}>2 \mathrm{GeV}^{2}$

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity (ß) and momentum

Analysis Cuts:

- SIDIS Cuts:
- $W>2 \mathrm{GeV}$
- $Q^{2}>2 \mathrm{GeV}^{2}$
- Other Analysis Cuts:
- $\mathrm{p}_{\pi^{+}}$Cut: $1.25 \mathrm{GeV}<\mathrm{p}_{\pi^{+}}<5 \mathrm{GeV}$
- θ-angle Cut: $5^{\circ}<\theta_{\text {particle }}<35^{\circ}$

CLAS12 RG-A Experimental Data
Electron Polar Angle

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity ((β) and momentum

Analysis Cuts:

- SIDIS Cuts:
- $W>2 \mathrm{GeV}$
- $Q^{2}>2 \mathrm{GeV}^{2}$
- Other Analysis Cuts:
- $\mathrm{p}_{\pi^{+}}$Cut: $1.25 \mathrm{GeV}<\mathrm{p}_{\pi^{+}}<5 \mathrm{GeV}$
- θ-angle Cut: $5^{\circ}<\theta_{\text {particle }}<35^{\circ}$
- $\mathrm{y}<0.75$ (minimize other background processes)

- $x_{F}>0$ (minimize contributions from target fragmentations)
- Missing Mass Cut: $\mathrm{M}_{\mathrm{x}}>1.5 \mathrm{GeV}$ (limits contributions from exclusive events)

Event Selection

Particle ID (PID):

- Electron ID: Based on Electromagnetic Calorimeter (PCAL) and Cherenkov Counters (HTCC)
- Hadron (π^{+}) ID: Based on Time-Of-Flight Counters (TOF) and the correlation of velocity ((β) and momentum

Analysis Cuts:

- SIDIS Cuts

- $W>2 \mathrm{GeV}$
- $Q^{2}>2 \mathrm{GeV}^{2}$
- Other Analysis Cuts:
- $\mathrm{p}_{\pi^{+}}$Cut: $1.25 \mathrm{GeV}<\mathrm{p}_{\pi^{+}}<5 \mathrm{GeV}$
- θ-angle Cut: $5^{\circ}<\theta_{\text {particle }}<35^{\circ}$
- $\mathrm{y}<0.75$ (minimize other background processes)
- $x_{F}>0$ (minimize contributions from target fragmentations)

- Missing Mass Cut: $\mathrm{M}_{\mathrm{x}}>1.5 \mathrm{GeV}$ (limits contributions from exclusive events)
- Fiducial Cuts (e.g., accounts for bad channels present in data)

Analysis Procedure

Experimental extraction of cross-section

$d^{5} \sigma$	1	1	N	1
$\overline{d Q^{2} d y d P_{T} d z d \phi_{h}}=\overline{\Gamma_{\nu}} \overline{\Delta Q^{2} \Delta y \Delta P_{T} \Delta z \Delta \phi_{h}} \overline{R \cdot B C \cdot \eta \cdot N_{0}} \overline{\left(N_{A} \cdot \rho \cdot t / A_{w}\right)}$				
Where:		Bin Volume		Target Number Density

- $\mathrm{R}=$ Radiative Correction
- $\eta=$ Acceptance Correction Requires Monte Carlo (MC) Simulation
- $\mathbf{N}=$ Bin Yields
- $N_{0}=$ Life-time corrected incident electron flux
- $B C=$ factor which evolves bin-averaged differential cross-section SIDIS MC are generated with LEPTO event generator

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (4 Dimensions)

$17 Q^{2}-y$ Bins Total - 25-36 z-P P_{T} Bins (per $Q^{2}-y$ bin)
Examples of new binning scheme using Q^{2}, y, z, and P_{T}

Missing Mass Cut Lines:

"..... Minimum MM Cut \qquad Center MM Cut Maximum MM Cut Center (Neutron) MM Cut

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

$17 Q^{2}-y$ Bins Total - 25-36 z-P P_{T} Bins (per $Q^{2}-y$ bin) ϕ_{h} distribution for the $\mathrm{Q}^{2}-\mathrm{y}-\mathrm{z}-\mathrm{P}_{\mathrm{T}}$ bin shown in red

Missing Mass Cut Lines:

- Center MM Cut	Center (Neutron) MM

\qquad

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (5 Dimensions)

Methods used for Acceptance Corrections:

- Bin-by-bin Correction
- Simple method which just needs the 1D plots shown here
- Bayesian Unfolding
- Bayesian Unfolding Method uses Acceptance Matrices to correct the data

Acceptance Corrections and Bin Migration Study

- Acceptance Matrix: $\mathrm{A}_{(i, j)}$ describes both Acceptance (including geometric acceptance and detector efficiency) and Bin Migration
- $A_{(i, j)}=\frac{\text { Number of Events Generated in bin } j \text { but Reconstructed in bin } i}{\text { Total Number of Events Generated in the } j \text { th bin }}$
- Acceptance Unfolding: $Y_{i}=A_{(i, j)} X_{j}+\beta_{i} \Leftrightarrow X_{j}=A_{(i, j)}^{-1}\left(Y_{i}-\beta_{i}\right)$ where:
- $\quad Y_{i}=$ Number of events experimentally measured in the i-th bin
- $\quad X_{j}=$ Number of acceptance-corrected events in the j-th bin
- $\quad \beta_{i}=$ Number of events from outside the signal region measured in the i-th bin

Example of (3D) Unfolding Procedure

Using the Flattened $z-P_{T}-\phi_{\mathrm{h}}$ Multidimensional Bins

Pass 1

Cosine Moments as Functions of z - Pass 1

Cosine Moments as Functions of \mathbf{z} - Pass 1

Pass 2 Conditions

- Monte Carlo statistics are low (using test sample)
- Have not applied Momentum/Energy Loss Corrections in Pass 2
- Momentum Corrections have been developed for Pass 1 Data but not for Pass 2 yet
- Momentum Smearing Corrections are also needed for the Pass 2 Monte Carlo
- Need to check/develop new fiducial cuts optimized for Pass 2
- Sector dependences in the ϕ_{h} distributions may be improved by altering the cuts along the detector's edge

Pass 2 Comparisons - Acceptances

$\operatorname{Cos}\left(\phi_{h}\right)$ Moment as Functions of z - Pass 2 Comparison

$\mathbf{B}=\boldsymbol{A}_{\boldsymbol{U} \boldsymbol{U}}^{\boldsymbol{\operatorname { c o s }} \varphi_{\boldsymbol{h}}}$	ϕ_{h} Plots were fitted with: $\mathrm{A}\left(1+\mathbf{B} \cos \left(\phi_{\mathbf{h}}\right)+\mathrm{C} \cos \left(2 \phi_{\mathrm{h}}\right)\right)$ Q

Unfolded with Bayesian Method \mathbf{Q}^{2}-y Bin 5

$\operatorname{Cos}\left(2 \phi_{h}\right)$ Moment as Functions of z - Pass 2 Comparison

$C=A_{U U}^{\cos 2 \varphi_{h}}$	ϕ_{h} Plots were fitted with: $A\left(1+B \cos \left(\phi_{h}\right)+C \cos \left(2 \phi_{h}\right)\right)$

Unfolded with Bayesian Method $\mathbf{Q}^{2}-\mathbf{y}$ Bin 5

Outlook

- Working on Multidimensional Acceptance Corrections for the simultaneous unfolding of $\mathrm{Q}^{2}, \mathrm{y}, \mathrm{z}, \mathrm{P}_{\mathrm{T}}$, and ϕ_{h} variables
- Includes additional efforts towards more realistic MC simulations, both on the detector response description and physics process
- Investigating Sector Description/Sector Dependence related to Acceptance Corrections
- Working on fully including Pass 2 Data
- Still need to include Radiative and BC Corrections in this analysis
- Ongoing Investigations of Vector Meson Contributions
- Cross-checking Analysis with T. Hayward

Sector Correlations with Φ_{h} Distributions - Pass 1

Issue: Some bins seem to have additional modulations not explained by the $\operatorname{Cos}(\phi)$ and $\operatorname{Cos}(2 \phi)$ moments

- The 6 peak structure could be related to the forward detector sectors
- Plots below show the lab angles and momentum of both particles within the given kinematic bin of Q^{2}, y, z, and P_{T}

Sector Correlations with ϕ_{h} Distributions - Pass 1

Issue: Some bins seem to have additional modulations not explained by the $\operatorname{Cos}(\phi)$ and $\operatorname{Cos}(2 \phi)$ moments

- The 6 peak structure could be related to the forward detector sectors
- Plots show the ϕ_{h} distributions separated based on which sector the $\pi+$ pion is detected
- Additional Requirement: Electron in Sector 1
- This suggests that the effect is related to mismatching in sector acceptance between Data and Monte Carlo

Sector Correlations with ϕ_{h} Distributions - Pass 2 Comparison

Issue: Some bins seem to have additional modulations not explained by the $\operatorname{Cos}(\phi)$ and $\operatorname{Cos}(2 \phi)$ moments

- The 6 peak structure could be related to the forward detector sectors
- Plots show the ϕ_{h} distributions separated based on which sector the $\pi+$ pion is detected
- Additional Requirement: Electron in Sector 1
- This suggests that the effect is related to mismatching in sector acceptance between Data and Monte Carlo
- Also present in Pass 2

Sector Correlations with Cos(\$) Measurements - Pass 1 and 2

Thank you

Questions?

Acknowledgments and Thanks

- Contributions made by other members of the CLAS Collaboration and researchers at Argonne National Lab
- This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-ACO2-06CH11357

Backup Slides

Cosine Moments as Functions of \mathbf{z} - with Pass 2

$$
\begin{array}{cc|c}
\mathrm{B}=A_{U U}^{\cos \varphi_{h}} & \mathrm{C}=A_{U U}^{\cos 2 \varphi_{h}} & \begin{array}{c}
\phi_{\mathrm{h}} \text { Plots were fitted with: } \\
\mathrm{A}\left(1+\mathrm{B} \cos \left(\phi_{\mathrm{h}}\right)+\mathrm{C} \cos \left(2 \phi_{\mathrm{h}}\right)\right) \\
\hline
\end{array} \mathrm{l}
\end{array}
$$

Corrected with Bin-by-bin Method $\mathbf{Q}^{2}-\mathbf{y} \operatorname{Bin} 5$

Cosine Moments as Functions of \mathbf{z} - with Pass 2

$$
\mathrm{B}=A_{U U}^{\cos \varphi_{h}} \quad \mathrm{C}=A_{U U}^{\cos 2 \varphi_{h}}
$$

ϕ_{h} Plots were fitted with:

Unfolded with Bayesian Method \mathbf{Q}^{2}-y Bin 5

Multidimensional Plot of Parameter C

Comparisons of Pass 1 and Pass 2 Unfolding

Using the Multidimensional Kinematic Bin from the prior example for this comparison

connecticut Argonne

More on Boer-Mulders...

Sivers
Twist-2 TMDs

- \mathbf{P} is the momentum of the proton
- \mathbf{k}_{T} is the transverse momentum of the quark
- s_{\perp} is the transverse spin of the quark

If the Boer-Mulders term is non-zero, then there is a net transverse quark polarization inside of unpolarized protons

Event Selection (Full PID)

The RG-A Analysis Overview and Procedures note goes into detail about the common particle identification scheme used for RG-A
(See: https://clas12-docdb.jlab.org/DocDB/0009/000949/001/RGA Analysis Overview and Procedures-08172020.pdf)

Electron PID Criteria:

- Detected in Forward Detector
- >2 photoelectrons detected in the HTCC
- $\quad>0.07 \mathrm{GeV}$ energy deposited in the PCAL
- Sector dependent sampling fraction cut
- "Diagonal cut" for electrons above 4.5 GeV (HTCC threshold)
- $\mathrm{y}<0.75$, not strictly an "electron cut", but sets the min electron energy approximately $>2.4 \mathrm{GeV}$

Argonne

- $\quad \mathrm{p}>1.25 \mathrm{GeV}$
- Refined chi2pid cuts

Pion PID Criteria:

- Detected in Forward Detector

Data and Monte Carlo Comparison

U~ロNM | UNIVERSITYOF

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (4 Dimensions)

$8 \mathrm{Q}^{2}-\mathrm{x}_{\mathrm{B}}$ Bins Total - 20-49 z-P P_{T} Bins (per $\mathrm{Q}^{2}-\mathrm{x}_{\mathrm{B}}$ bin)

Example of old binning scheme using Q^{2}, x_{B}, z, and P_{T}

Main Issue was with the irregular shape of the $Q^{2}-x_{B}$ Bins

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (4 Dimensions)

$17 Q^{2}-y$ Bins Total - 20-42 z-P P_{T} Bins (per $Q^{2}-y$ bin)
Example of prior binning scheme using Q^{2}, y, z, and P_{T}

Both the $Q^{2}-y$ and $z-P_{T}$ bins are now rectangular, which makes the bins easier to work with

Multidimensional Analysis Procedures

Multidimensional Kinematic Binning (4 Dimensions)

Example of the new binning scheme using Q^{2}, y, z, and P_{T}

Comparisons of 1D and 3D Unfolding Procedure

Using the Multidimensional Kinematic Bin from the prior example for this comparison

Bin-by-bin Acceptance Correction gives the exact same results

SVD Unfolding has not been able to work so far with the Multidimensional Unfolding procedures

Extra Examples of (3D) Unfolding Procedure

Using the Flattened $z-P_{T}-\phi_{\mathrm{h}}$ Multidimensional Bins
Unfolded with Bayesian Method

Cosine Moments as Functions of z - Old Bins

$$
\mathrm{B}=A_{U U}^{\cos \varphi_{h}} \quad \mathrm{C}=A_{U U}^{\cos 2 \varphi_{h}}
$$

ϕ_{h} Plots were fitted with:	Unfolded with Bayesian Method	$\mathbf{Q}^{2}-\mathbf{y}$ Bin 5

Argonne

Cosine Moments as Functions of z - Old Bins

$$
\mathrm{B}=A_{U U}^{\cos \varphi_{h}} \quad \mathrm{C}=A_{U U}^{\cos 2 \varphi_{h}}
$$

ϕ_{h} Plots were fitted with:
$\mathrm{A}\left(1+\mathrm{B} \cos \left(\phi_{\mathrm{h}}\right)+\mathrm{C} \cos \left(2 \phi_{\mathrm{h}}\right)\right)$

Unfolded with Bayesian Method $\mathbf{Q}^{2}-\mathbf{y}$ Bin 14

Cosine Moments as Functions of z - Old Bins

$$
\mathrm{B}=A_{U U}^{\cos \varphi_{h}} \quad \mathrm{C}=A_{U U}^{\cos 2 \varphi_{h}} \quad \begin{gathered}
\phi_{\mathrm{h}} \text { Plots were fitted with: } \\
\mathrm{A}\left(1+\mathrm{B} \cos \left(\phi_{\mathrm{h}}\right)+\mathrm{C} \cos \left(2 \phi_{\mathrm{h}}\right)\right)
\end{gathered}
$$

Corrected with Bin-by-bin Method $\quad \mathbf{Q}^{2}-\mathbf{y} \operatorname{Bin} 5$

Cosine Moments as Functions of z - Old Bins

$\mathrm{B}=A_{U U}^{\cos \varphi_{h}} \quad \mathrm{C}=A_{U U}^{\cos 2 \varphi_{h}} \quad$| ϕ_{h} Plots were fitted with: |
| :---: |
| $\mathrm{A}\left(1+\mathrm{B} \cos \left(\phi_{\mathrm{h}}\right)+\mathrm{C} \cos \left(2 \phi_{\mathrm{h}}\right)\right)$ |

Corrected with Bin-by-bin Method	$\mathbf{Q}^{2}-\mathbf{y}$ Bin 14

Example of (1D) Unfolding Procedure

Using the Multidimensional Kinematic Bin from prior example

Parameters shown are from the fits previously described

Comparisons of 1D and 3D Unfolding Procedure

Using the Multidimensional Kinematic Bin from the prior example for this comparison

Bin-by-bin Acceptance Correction gives the exact same results

Bayesian Unfolding gives similar results CONNECTICUT ArgOn

Example of (3D) Unfolding Procedure - Old Bins

Using $Q^{2}-y-\phi_{h}$ Multidimensional Bins

Modulated Unfolding Closure Tests

- Modulated the MC distributions using the formula:

$$
\text { Weight }=1+B \cos \left(\phi_{h}\right)+C \cos \left(2 \phi_{h}\right)
$$

- Gives the weight for each MC event based on generated ϕ_{h}
- Parameter values currently being used in this image:
- $\mathrm{B}=-0.05$
(Same for every z-P P_{T} bin)
- $C=0.025$

- Modulated MC REC is then unfolded using the un-modulated response matrix (in 1D and Multi-Dim examples) and compared with 'MC TRUE'
- MC TRUE is the modulated MC GEN distribution
- Also performed a closure test of unfolding the un-modulated MC REC distribution with the un-modulated response matrix to ensure the method was applied properly

Modulated Unfolding Closure Tests

The parameters used for weighing modulations below are:

$$
B=-0.5 \text { and } C=0.025
$$

Results show that an unmodulated Simulation can correct distributions with modulations

Other Unfolding Closure Tests

Other closure tests being used to check that Unfolding is done properly:

- Replace the experimental data with the reconstructed Monte Carlo (no modulations)
- Should return the generated (i.e., MC TRUE) distribution

$\triangle \mathrm{ANM} \left\lvert\, \begin{aligned} & \text { UNIVERSITYOF } \\ & \text { CONNECTICUT }\end{aligned}\right.$
UNIVERSITYOF Argonne
CONNECTICUT

49

Momentum Corrections from Exclusive Events

- Momentum corrections are developed for the RG-A data being used in this analysis
- Designed to correct for kinematic-dependent reconstruction issues in the experimental data using well-understood reactions
- Use exclusive reactions to correct the particles' momentum as sector-dependent functions of the particles' measured azimuthal angle (ϕ_{lab}) and momentum
- The primary reaction used for the electron and π^{+}pion is ep $\rightarrow \mathrm{e}^{\prime} \pi^{+}(\mathrm{N})$
- Elastic scattering process also used to help correct the electron momentum
- Developed from momentum 4-vector conservation to calculate the ideal momentum of a particle from exclusive reactions based on the kinematics of the other particle(s)
- Correction is taken by plotting the difference between this calculation and the measured momentum as functions of the measured momentum and ϕ_{lab}

Momentum Corrections from Exclusive Events

These plots show Missing Mass vs. particle momentum in 3ϕ bins for all 6 sectors of the detector before/after momentum corrections - Corrections are quadratic functions of ϕ and momentum

Missing Mass $\left(M_{e \pi^{+} X}\right)$ vs π^{+}Pion Momentum

$\triangle E D N \mathbf{N}$

品
路

Corrections

Missing Mass ($M_{e \pi^{+} X}$) vs π^{+}Pion Momentum

All Plots here are from Pass 1
(Pass 2 corrections are still in early development)

Corrected
Central o Bin
Corrected
Corrected
Negative \circ Bin
Corrected
Positive o Bi

Office o Science

Momentum Smearing - Pass 1

- The momentums of the particles in these plots are CORRECTED (see Momentum Corrections from Exclusive Events)
- Momentum Smearing is applied in addition to existing MC reconstruction processes
- The momentum smearing functions use 2D Missing Mass plots to check how it improves the MC
- The widths of the peaks are shown in each plot above
- Momentum smearing is done with the equation: $\mathbf{P}_{\text {smeared }}=\mathbf{P}_{\text {Reconstructed }}+\mathbf{S F} *\left(\mathbf{P}_{\text {Reconstructed }}-\mathbf{P}_{\text {Generated }}\right)$
- SF is the smear factor used to modify the simulated reconstructed momentum (currently equal to 0.75)
- A properly smeared MC distribution should have approximately the same width as the Experimental data

Momentum Corrections/Smearing - Pass 1

Ratio of Missing Mass Width vs π^{+}Pion Momentum:

- The ratio of the Monte Carlo and Experimental data's widths should go to 1 as smearing improves
- Smearing the momentum also affects the widths of the Missing Mass vs azimuthal/polar angles of the particles
- Development of this correction calls for finding the best smearing parameter for all particle kinematics

Momentum Smearing - Pass 2

$\Delta P / P$ vs θ Plots for π^{+}Pion Kinematics:

- The momentums of the particles in these plots do NOT include Momentum Corrections from Exclusive Events
- The momentum smearing procedure uses $2 \mathrm{D} \Delta \mathrm{P} / \mathrm{P}$ vs θ plots to check the resolution matching between Data and MC
- The resolution is defined as the widths of the peaks that are shown in each plot above
- Current Momentum smearing is done with the equation: $\mathbf{P}_{\text {Smeared }}=\mathbf{P}_{\text {Reconstructed }}+\mathbf{S F} *\left(\mathbf{P}_{\text {Reconstructed }}-\mathbf{P}_{\text {Generated }}\right)$
- SF is the smear factor used to modify the simulated reconstructed momentum (currently equal to 1.75)
- New (Ideal) form of Smearing Function (not yet applied) would be: $\mathbf{P}_{\text {Smeared }}=\mathbf{P}_{\text {Reconstructed }}+\left(\mathbf{P}_{\text {Reconstructed }}\right) * \sigma_{\text {SF }}(\boldsymbol{\theta}) * \mathbf{S F} *(\operatorname{gaus}(\mathbf{0}, \mathbf{1}))$
- $\sigma_{\mathrm{SF}}(\theta)$ is the main smearing factor (function of θ) based on the fits of the $\Delta \mathrm{P} / \mathrm{P}$ vs θ plots above
- The gaus(0,1) adds some randomness to the smearing while SF is still a static smear factor meant to help control the amplitude of smearing
- A properly smeared MC distribution should have approximately the same width as the Experimental data

ULDNN| $\begin{aligned} & \text { UNIVERSITYOF } \\ & \text { CONNECTICUT }\end{aligned}$ Argonne

Momentum Smearing - Comparison of Widths - Pass 2

- The Bottom Center and Bottom Right plots show the differences between the widths of Data and unsmeared/smeared MC
- The difference should go to 0 as resolution becomes a better match
- $\sigma_{\mathrm{SF}}(\theta)$ can come from the Bottom Center plot to see how much more the MC Reconstructed momentum needs to be smeared to match the Experimental Data
- Smeared plots here still use a static smearing factor instead of $\sigma_{\mathrm{SF}}(\theta)$

Sector Correlations with $\operatorname{Cos}(\phi)$ and $\operatorname{Cos}(2 \phi)$ Measurements

Showing the $\operatorname{Cos}(\phi)$ and $\operatorname{Cos}(2 \phi)$ Moments as functions of the particle sector

These plots show those differences in Pass 1 and Pass 2 for when the Electron (left plots) or π^{+}pion (right plots) are restricted to being detected in a single sector

Images are grouped on the left and right based on Pass version of the data being used

Sector Correlations with ϕ_{h} Distributions - Old Binning

Issue: Some bins seem to have additional modulations not explained by the $\operatorname{Cos}(\phi)$ and $\operatorname{Cos}(2 \phi)$ moments

- The 6 peak structure could be related to the forward detector sectors
- Plots below show the lab angles and momentum of both particles within the given kinematic bin of Q^{2}, y, z, and P_{T}

Sector Correlations with ϕ_{h} Distributions - Old Binning

Issue: Some bins seem to have additional modulations not explained by the $\operatorname{Cos}(\phi)$ and $\operatorname{Cos}(2 \phi)$ moments

- The 6 peak structure could be related to the forward detector sectors
- Plots show the ϕ_{h} distributions separated based on which sector the $\pi+$ pion is detected
- Additional Requirement: Electron in Sector 1
- This suggests that the effect is related to mismatching in sector acceptance between Data and Monte Carlo
*Note: This example uses a slightly older version of the binning scheme and Pass 1 Data

Ongoing Cross-Checks with T. Hayward

Comparisons between T. Hayward's measurements (TBH) of the $\operatorname{Cos}\left(\phi_{h}\right)$

Moments and mine (RC)

- Comparison is between different different fit methods - MLM \rightarrow Maximum Likelihood Method
- TBH \rightarrow Uses Pass 2 Data
- RC \rightarrow Uses Pass 1 Data
All images on this slide were created by T. Hayward

Vector Meson Contributions to Φ_{h} Distributions	
$0.75<\mathrm{P}_{\text {- }}(\mathrm{GeV})<1.00$	

$0.65<y<0.75,2.0<Q^{2}<2.423,0.15<z<0.20$

Investigations into discrepancies
\leftarrow Suspicious Vertex Discrepancies between Data and MC

- Possibly coincidental based on other results in different kinematic regions
\leftarrow Acceptance effects on the discrepancy
- Discrepancy is larger when acceptance vanishes along the edges of the ϕ_{h} Distributions

END

Link to more Images:

https://userweb.jlab.org/~richcap/Interactive Webpage SIDIS richcap/Interactive Unfolding Page Updated.htmI

