A Machine Learning approach for DVCS identification without proton detection

Juan Sebastian Alvarado IJCLab - Orsay

CLAS collaboration meeting 13/03/2024

Introduction

- **2** Analysis of $ep \rightarrow e\gamma p$
 - Data selection
 - Model training
 - Background substraction
 - BSA

3 Analysis of $ep \rightarrow e\gamma(p)$

- Data selection
- Model training
- Background subtraction
- BSA

4 Conclusions

Introduction

In principle, the measurement of only an electron and a photon is enough to reconstruct a DVCS event. We aim for DVCS event reconstruction without requiring final proton information. **Advantages (with respect to** $ep\gamma$ **detection):**

- □ Improves GPD studies at small -t.
- □ Higher statistics, hence more precise BSA measurements or smaller bins.
- □ Helpful for experiments that do not consider proton detection.

Difficulties:

- □ The $ep\gamma$ final state includes background contributions from the whole Deep Inelastic Scattering (DIS) spectra.
- Reduced options for cuts:
 - □ Only one exclusivity variable: Missing mass of $ep \rightarrow e\gamma$.

Therefore, we need a method that ensures DVCS identification: Machine Learning

We test the ML approach on experimental data:

- 1. Validation of the method when we include the proton information.
- 2. Application to the case without proton information.

$ep \rightarrow e\gamma p$: Data selection

Analyzed data set

- fall2018 RG-A data.
- Inbending and outbending torus configuration

Kinematic window:

- $\Box W > 2 \text{ GeV},$
- \Box $Q^2>1~{
 m GeV^2}$,
- $\hfill \ensuremath{\square}$ $\ensuremath{\mathbf{q}'}\xspace > 2$ GeV (photon),
- $\hfill\square\hfill {\bf k}'>1$ GeV (electron),
- $\label{eq:prod} \textbf{p}' > 0.3 \ \text{GeV} \ (\text{nucleon}).$

Exclusivity cuts:

We reconstruct ϕ and t in two ways:

- 1. Using $\gamma *$ and the outgoing photon $\gamma : \Rightarrow \phi(\gamma)$
- 2. Using $\gamma *$ and the recoil proton $p: \Rightarrow \phi(p')$

$$\Box \ \Delta \phi = |\phi(p') - \phi(\gamma)| < 2^\circ$$
,

$$\Box \ \Delta t = |t(p') - t(\gamma)| < 2 \text{ GeV}^2,$$

 $\Box \ \mathbf{P}_{miss} < 1 \ \mathrm{GeV}.$

Event selection:

- No restriction on the number of particles in the event or detection topology.
- □ If multiple *e*, γ or *p* detections, we select the set (*e*, γ , *p*) that minimizes the missing mass of the process *ep* → *ep* γ

$ep \rightarrow e\gamma p$: Model training - Inbending torus The main contamination channel is $ep \rightarrow ep\pi^0 \rightarrow ep\gamma(\gamma)$.

$ep \rightarrow e\gamma p$: BDT - Inbending torus

A Boosted Decision Tree (BDT) was trained to classify the events.

5/19

- $\Box \text{ Discriminating variables: } \{M^2_{ep\gamma}, M^2_{e\gamma}, \Delta\phi, \Delta t, \theta_{\gamma X}\}.$
- □ Simulated DVCS as signal.
- $\hfill\square$ Simulated π^0 events, reconstructed as DVCS, as background.
- **Training is done on each** (Q^2, x_B, t) bin.

$ep \rightarrow e\gamma p$: BDT - Inbending torus

We extract a dataset with DVCS \sim 94.5% and DVMP \sim 5.5%.

Histograms are normalized to 1.

$ep \rightarrow e\gamma p$: Background subtraction

To estimate and remove the residual background on each (t, Q^2, x_B, ϕ) bin and helicity state we use two methods:

Method 1:

Let us define:

- $\square n_{MC/Data}^{1\gamma} = \text{Number of} \\ \text{simulated } \pi^0 \text{ events that pass} \\ \text{the DVCS analysis.} \\$
- □ $n_{MC/Data}^{2\gamma}$ = Number of simulated π^0 events that are reconstructed.

The contamination is then:

$$n_{Data}^{1\gamma} = \left(\frac{n_{MC}^{1\gamma}}{n_{MC}^{2\gamma}}\right) n_{Data}^{2\gamma}.$$

Method 2:

- **1.** Reconstruct π^0 events.
- 2. For each π^0 , generate 1500 decays.
- 3. If the event pass the DVCS analysis with any photon, fill histograms.
- 4. If the event pass the DVMP analysis, increment $n_{MC}^{2\gamma}$ by the reconstruction efficiency.
- 5. At the end of the decays, DVCS events are normalized by $1/n_{MC}^{2\gamma}$.

$ep \rightarrow e\gamma p$: Background subtraction

About the background subtraction:

- $\hfill\square$ The final estimation is given by the average of the two.
- □ Error on the estimation is given by the difference of each method from the average.

8/19

About the BSA measurements:

□ Identical (t, Q^2, x_B) binning of the RG-A analysis note (64 in total) used for this analysis.

Systematic uncertainties have been estimated.

$ep \rightarrow e\gamma p$: **BSA: benchmark measurements**

9/19

$ep \rightarrow e\gamma p$: **BSA**

All in all, we saw that:

- □ The inbending dataset can still provide an important contribution in the $Q^2 < 1.8$ GeV² region.
- Inbending and outbending configuration measurements are compatible.
- □ The background contamination after BDT is small.
- Both background subtraction methods give similar results.
- The BDT classification boost the statistics importantly.

$ep \rightarrow e\gamma(p)$: Data selection

Kinematic window:

We apply the same kinematic restrictions:

- $\label{eq:W} \begin{array}{ll} \square & W > 2 \mbox{ GeV}, \\ \square & Q^2 > 1 \mbox{ GeV}^2 \ , \\ \square & {\bf q}' > 2 \mbox{ GeV (photon)}, \\ \square & {\bf k}' > 1 \mbox{ GeV (electron)}. \end{array}$
- \Box $-rac{t}{Q^2} < 1$,

Exclusivity cuts:

However, our exclusivity cuts are no longer useful.

Event selection

- Only analyze events with 1 or 2 photons.
- The event is selected by taking the most energetic photon and electron.

BDT training:

- □ Training using experimental data:
 - (Background) signal are the events that (do not) pass the analysis with proton information.
- □ Discriminating variables: $\{M_{e\gamma X}^2, M_{eX}^2, t\}$.

_____ 12/19

$ep ightarrow e\gamma(p)$: Model training - Inbending

The following variables are used for training.

Figure: Missing masses $M_{e\gamma X}^2$, M_{eX}^2 and *t*, normalized to 1, for raw data (red), training DVCS dataset (black) and training π^0 dataset (blue).

Histograms are normalized to 1.

$ep \rightarrow e\gamma(p)$: Background subtraction

Without proton detection, the $e\gamma$ final state receives contributions from a large set of processes. However:

1. Photon emission comes mainly neutral meson decays, being $\pi^{\rm 0}$ the dominant one.

$ep \rightarrow e\gamma(p)$: Background subtraction

Without proton detection, the $e\gamma$ final state receives contributions from a large set of processes. However:

- 1. Photon emission comes mainly neutral meson decays, being $\pi^{\rm 0}$ the dominant one.
- 2. The contamination channel is now **inclusive** π^0 production.

$ep \rightarrow e\gamma(p)$: Background subtraction

Without proton detection, the $e\gamma$ final state receives contributions from a large set of processes. However:

- 1. Photon emission comes mainly neutral meson decays, being π^0 the dominant one.
- 2. The contamination channel is now **inclusive** π^0 production.
- 3. Both background subtraction methods are valid for such case, and it only depends on a good π^0 reconstruction.

$ep \rightarrow e\gamma(p)$: Comparison with $e\gamma p$ detection

After BDT cut and background subtraction, there is an important increase on statistics

14/19

Figure: Kinematic variables for the analysis with proton (red) and without proton (blue) information.

$ep \rightarrow e\gamma(p): \text{BSA} - \text{Benchmark measurements}$ Bin 26: 1.8 < $Q^2(\text{GeV}^2)$ < 2.4, 0.16 < x_B < 0.26, $-t(\text{GeV}^2)$ < 0.2 Inbending Outbending

15/19

Systematic Errors

It will be done by comparing the BSA amplitude when the analysis is done with some modifications.

□ Due to the exclusivity cuts:

□ Re-do the full analysis using slightly tighter selection cuts □ $|\Delta t|$, $|\Delta \phi|$, P_{miss} . 16/19

Due to the beam polarization uncertainty

 $\Box\,$ Estimated to be $\sim 5\%$ of the BSA.

Due to the choice of BDT cut.

□ Re-do the analysis using a different BDT cut.

□ Due to the background subtraction.

$$\Box \ \delta A = \frac{A^{raw} - A_{\pi^0}}{(1-f)^2} \delta f$$

□ *f* is the contamination before subtraction, $A_{\pi^0} \approx 0.05$ and δf is the estimation difference of both methods.

□ Total error as the quadratic sum of components.

Systematic Errors

Bin 26: $1.8 < Q^2(\text{GeV}^2) < 2.4, \ 0.16 < x_B < 0.26, \ -t(\text{GeV}^2) < 0.2$

- Background subtraction methods agree.
- □ Systematics have decreased.

Conclusions

- Boosted decision trees presents an alternative for channel selection on an event-by-event basis.
- □ When the final proton is included:
 - DVCS exclusivity variables have enough separation power to allow DVCS and Deep Exclusive \u03c0⁰ Production identification in an efficient way.

18/

- □ When the final proton information is ignored:
 - □ There is a wider phase space towards the small *t* region.
 - There is a boost on statistics leading to more precise BSA measurements.
- $\hfill Without any restriction on the detection topology we extract datasets of <math display="inline">\sim$ 95% DVCS events.
- In general, results are compatible with the published RG-A results.

Outlook

- □ An analysis note will be submitted to review soon.
- □ An analysis on pass2 data is planned as well.
- □ The next step is to test this method on RG-B data for nDVCS BSA measurements.

Thanks

Backup

Phase space with proton information - Inbending

Let's compare the (Q^2, x_B) phase space.

19/19

19/19

Phase space without proton information -Inbending

Let's compare the (Q^2, x_B) phase space.

Kinematics with proton information

Figure: Momentum of the final particles as a function of the polar angle (first row) and detection polar vs azimuthal angle for each final state.

Kinematics without proton information

Figure: Momentum of the final particles as a function of the polar angle (first row) and detection polar vs azimuthal angle for each final state .

$ep \rightarrow e\gamma p$: Model training - Outbending torus

The main contamination channel is $ep \rightarrow ep\pi^0 \rightarrow ep\gamma(\gamma)$.

$ep \rightarrow e\gamma p$: BDT - Outbending torus

We extract a dataset with DVCS \sim 96.6% and DVMP \sim 3.4%.

$ep \rightarrow e\gamma(p)$: NP BDT - Inbending

To optimize the DVCS event selection, a Boosted Decision Tree (BDT) is trained to classify the events.

- □ Discriminating variables: $\{M_{e\gamma X}^2, M_{eX}^2, t\}$.
- □ Simulated DVCS as signal.
- \square π^0 production data, reconstructed as DVCS, as background.

(a) BDT output distributions for different datasets.

(b) ROC curve of the model and applied cut.

19/19

19/19

$ep \rightarrow e\gamma(p)$: Model training NP- Outbending

Figure: Missing masses $M_{e\gamma X}^2$, M_{eX}^2 and *t*, normalized to 1, for data (red), training DVCS dataset (black) and training π^0 dataset (blue).

$ep \rightarrow e\gamma(p)$: NP BDT - Outbending

To optimize the DVCS event selection, a Boosted Decision Tree (BDT) is trained to classify the events.

- □ Discriminating variables: $\{M_{e\gamma X}^2, M_{eX}^2, t\}$.
- □ Simulated DVCS as signal.
- \Box π^0 production data, reconstructed as DVCS, as background.

(a) BDT output distributions for different datasets.

(b) ROC curve of the model and applied cut.

19/19

eppi0 NP outbending

RGA bins

Bin no.	Q^2 (GeV ²)	x _B	t' (GeV ²)	Bin no.	Q^2 (GeV ²)	x_B	t' (GeV ²)	Bin no.	$Q^2(\text{GeV}^2)$	x _B	t' (GeV ²)
1		< 0.13		25		< 0.16		49	3.25 - 5.0	< 0.33	< 0.2
2	< 1.4	0.13 - 0.21	< 0.2	26	1.8 - 2.4	0.16 - 0.26	< 0.2	50		> 0.33	
3		> 0.21		27		> 0.26		51		< 0.33	0.2 - 0.4
4		< 0.13		28		< 0.16		52		> 0.33	
5		0.13 - 0.21	0.2 - 0.4	29		0.16 - 0.26	0.2 - 0.4	53		< 0.33	0.4 - 0.8
6		> 0.21		30		> 0.26		54		> 0.33	
7		< 0.13		31		< 0.16		55		< 0.33	> 0.8
8		0.13 - 0.21	0.4 - 0.8	32		0.16 - 0.26	0.4 - 0.8	56		> 0.33	
9		> 0.21		33		> 0.26		57	> 5.0	< 0.55	< 0.2
10		< 0.13		34		< 0.16		58		> 0.55	
11		0.13 - 0.21	> 0.8	35		0.16 - 0.26	> 0.8	59		< 0.55	0.2 - 0.4
12		> 0.21		36		> 0.26		60		> 0.55	
13		< 0.13		37		< 0.21		61		< 0.55	0.4 - 0.8
14	1.4 - 1.8	0.13 - 0.21	< 0.2	38	2.4 - 3.25	0.21 - 0.33	< 0.2	62		> 0.55	
15		> 0.21		39		> 0.33		63		< 0.55	> 0.8
16		< 0.13		40		< 0.21		64		> 0.55	
17		0.13 - 0.21	0.2 - 0.4	41		0.21 - 0.33	0.2 - 0.4				
18		> 0.21		42		> 0.33					
19		< 0.13		43		< 0.21					
20		0.13 - 0.21	0.4 - 0.8	44		0.21 - 0.33	0.4 - 0.8				
21		> 0.21		45		> 0.33					
22		< 0.13		46		< 0.21					
23		0.13 - 0.21	> 0.8	47		0.21 - 0.33	> 0.8				
24		> 0.21		48		> 0.33					

$ep \rightarrow e\gamma(p)$: BSA - Benchmark measurements

19/19

Bin 16 - Inbending: $1.4 < Q^2 (\text{GeV}^2) < 1.8$, $x_B < 0.13$, $0.2 < -t (\text{GeV}^2) < 0.4$

$ep \rightarrow e\gamma(p)$: BSA - Benchmark measurements

Bin 26 - Inbending: $1.8 < Q^2 (\text{GeV}^2) < 2.4, \ 0.16 < x_B < 0.26, -t(\text{GeV}^2) < 0.2$

19/19

$ep \rightarrow e\gamma(p)$: BSA - Benchmark measurements

19/19

Bin 28 - Inbending: $1.8 < Q^2 (\text{GeV}^2) < 2.4$, $x_B < 0.16$, $0.2 < -t (\text{GeV}^2) < 0.4$

The update: Now with the correct *t* definition!

k'>1 GeV?

Figure: Sampling fraction vs electron momentum with proton detection on the inbending torus configuration.

SF is 0.23 in all momentum ranges.

k'>1 GeV?

Figure: BSA at bin 16.

It may affect importantly the BSA.

BDT score per bin

About the performance...

- BDT classification without proton information keeps 80% of the events classified with proton information
- $\hfill\square$ That represents 30% (40%) of the in(out)bending datasets.

η contamination

Figure: 2-photon invariant mass.

 η contamination is at least 10 times smaller than π^0 .

η contamination

Figure: π^0 and η contamination (%) per bin after BDT for the inbending dataset without proton information.

- If proton information is included: contamination is less than 1% on all bins.
- □ If proton information is ignored: contamination is less than 2% on most bins. Maximum is 7%.

η contamination

Figure: 2-photon invariant mass.

- If proton information is included: contamination is less than 1% on all bins.
- □ If proton information is ignored: contamination is less than 2% on most bins. Maximum is 7%.
 - However, more than half the events are from combinatorial background.
 - □ No subtraction was implemented then.

Fixed BSA cross-check

Using dvcsgen, a DVCS and π^0 asymmetry was generated.

 \square 1000 jobs with 10k events on each one for DVCS and π^0 .

19/19

 $\hfill\square$ –scale 2 , for getting a custom BSA

Figure: Generated BSA at bin 26

Goal is to recover unit BSA amplitude.

Fixed BSA cross-check

BSA on the combined dataset.

19/19

BDT removes a big part of the contamination.

Fixed BSA cross-check

After BDT and background subtraction we recover the full amplitude.

Fixed BSA cross-check: No proton

Now ignoring the proton information:

Figure: Generated BSA at bin 26

Goal is to recover unit BSA amplitude.

19/19

Fixed BSA cross-check: No proton

BSA on the combined dataset.

BDT removes a big part of the contamination.

19/19

Fixed BSA cross-check: No proton

After BDT and background subtraction we recover the full amplitude.

RC factor

Computing systematics

$$\begin{array}{ll} \text{Merging BSA} \quad A = \frac{\frac{A_{inb}}{\sigma(A_{inb})} + \frac{A_{outb}}{\sigma(A_{outb})}}{\sqrt{\frac{1}{\sigma(A_{inb})^2} + \frac{1}{\sigma(A_{outb})^2}}} \\ \text{Merging kin} \quad Q^2 = \frac{Q_{inb}^2 n_{inb} + Q_{outb}^2 n_{outb}}{n_{inb} + n_{outb}} \\ \text{Merging sys} \quad A_{\pm} = \frac{\frac{A_{inb} \pm \sigma_{outb}^{cut}}{\sigma(A_{inb})} + \frac{A_{outb} \pm \sigma_{outb}^{cut}}{\sigma(A_{outb})^2}}{\sqrt{\frac{1}{\sigma(A_{inb})^2} + \frac{1}{\sigma(A_{outb})^2}}} \\ \\ \text{Bkg sub} \\ \text{sys err} \quad \sigma^{bkg} = \frac{A^{raw} - A^{\pi^0}}{(1 - f)^2} \delta f \end{array}$$

$$\sigma(A) = \frac{1}{\sqrt{\frac{1}{\sigma(A_{inb})^2} + \frac{1}{\sigma(A_{outb})^2}}}$$
$$\sigma(Q^2) = \frac{\sigma(Q^2_{inb})n_{inb} + \sigma(Q^2_{outb})n_{outb}}{n_{inb} + n_{outb}}$$
$$\sigma^{cut} = \sqrt{\frac{(A_+ - A_0)^2 + (A_- - A_0)^2}{2}}$$