RG-A DVCS Cross Section Measurement

Status of the analysis – 3rd iteration

Sangbaek Lee

3/13/2024

CLAS Collaboration Meeting, March 2024

Physics Motivation

- Generalized Parton Distributions (GPDs) is a wellestablished tool to study the mass and spin distributions, and the mechanical properties.
- Experimentally determined differential cross sections of DVEP → Factorization → CFFs → GPDs
 - DVCS is the cleanest channel to probe the quarks
 - Defined as $\gamma^* p \rightarrow \gamma p$
 - Often referred to $ep \rightarrow e'p\gamma$
 - Interfered with the Bethe-Heitler processes
- Extracting CFFs and GPDs requires the measurements at large phase space
 - Absolute cross sections
 - Asymmetry

DVCS Cross Section Measurement

- Five binning variables
 - Bjorken x, x_B
 - Virtual photon four-momentum Q^2
 - Momentum transfer at nucleon |t|
 - Azimuthal angle between two planes ϕ
 - Nucleon spin direction
 - Integrated out for the unpolarized target
- Binned cross section determination
 - Count the events passes exclusivity condition
 - Divide it by luminosity, bin volume, efficiency, and correction factors

The RG-A DVCS cross section measurement

- Data set:
 - Run Group A, Pass-1, Fall 2018
 - Inbending: 30.0 mC, 39.7 fb⁻¹
 - Outbending: 31.8 mC, 42.0 fb⁻¹
- The analysis review within the DPWG is in progress
 - 2nd round review is done
 - 3rd iteration is ongoing, which majorly requires
 - Understanding of the normalization
 - New simulation with the relaxed radiative corrections
 - This talk is about the updates to the analysis for 3rd iterations.

Update – Cross Section Model

- Event generation using the KM15 model is added.
- Why KM15 model?
 - based on all DVCS experimental data prior to 2015
 - Analysis v2 of this work agreed the most w/KM15
 - Black dots are data, cyan curves are the model
 - matches well with the Hall A measurement
- Why more realistic model?
 - to reduce the systematics in the acceptance
 - to estimate the normalization at the detector level
- <u>https://gitlab.com/sangbaek/km15gen</u>

Update – Radiative Corrections (External)

- Electron loses its energy through the interaction with the target system.
 - GEMC simulates the energy loss for the final state particles from the detectors
 - The energy loss should be manually simulated for the incoming electron beam
 - External radiation does not occur frequently, but once it happens, it dramatically shifts kinematics, then cross section
 - Following steps are implemented in each event generator (Mo & Tsai)
 - Randomly simulate vertex location
 - Calculate the length in radiation length
 - 30 µm Al window = 3.3 ×10-4 X0
 5 cm LH2 = 5.4 ×10-3 X0

Update – Radiative Corrections (Internal)

- Why do we update the internal radiative corrections?
 - There is a cut in y_{col} to suppress BH from blowing up, especially in ϕ ~ 0 bin
 - At the same time this bin is BH-dominant and important in normalization
 - Practically, this cut was done by the equivalent cut in P_1 (propagator term)
 - This limit on P_1 was relaxed from 0.005 to 0.0005
 - Most bins are not affected. The example is at the right plot.
 - One of the major request from the committee

Update – Radiative Corrections (Internal)

- Marc Vanderhaeghen et al.'s method
 - Simulate the radiated photons with the effective external radiator thickness
 - Calculate the shifts in kinematics, and calculate the cross section there
 - Apply other exact RC factors to the cross section
- Igor Akushevich & Alexander Ilyichev's method
 - Exact radiative correction factor at the given phase space
 - Simulate the radiated photon based on the probability
 - Caveat) requires MM²e'p cut
- The RC factor from two methods roughly agrees for the BH.
- The RC factor using the KM15 model significantly differs from the BH's (~10%).

8

Update – Simulation Data

- Simulation data can be reduced into the smaller files with the momentum and detector information for the PID
 - a spreadsheet to maintain the data efficiently
 - these days, /volatile/ is busy
 - My simulation done in Feb. are already being deleted.
 - Experimental data is stored in /mss/ (/cache/)
 - Train 16: DVCS
 - Train 18: DVπ⁰P
 - Strategy) flat distribution (weighted) event generations
 - 147 bins in central kinematics
 - 159 surrounding bins to study the migration
 - 28k events simulated for each (x_B , Q^2 , |t|, ϕ) bin.

A	В	С	D	E	F	G	н	1	J
Job	Bins? (bulk	Rad?	Polarity	Lund file location	OSG	Rec root	Rec pkl	Gen root	Gen pkl
dvcs-km15	bulk	у	inb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_km15/fall2018_inb	7145	/volatile/clas12	/s ongoing	/volatile/clas12/sa	angt ongoing
dvcs-km15	bulk	r	inb, N/A	/volatile/clas12/sangbaek/dvcs_related/sim_norad_gen/dvcs_km15/fall2018_inb	N/A	N/A	N/A	N/A	/volatile/clas12/s
dvcs-km15	fringe	у	inb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_km15_fringe/fall2018_inb	7176	/volatile/clas12	/s ongoing	/volatile/clas12/sa	angt ongoing
dvcs-km15	bulk	у	outb	/volatile/clas12/sangbaekkdvcs_related/sim_rad_gen/dvcs_km15/fall2018_outb	7146	/volatile/clas12	/s ongoing	/volatile/clas12/sa	angt ongoing
dvcs-km15	bulk	r	outb, N/A	/volatile/clas12/sangbaek/dvcs_related/sim_norad_gen/dvcs_km15/fall2018_outb	N/A	N/A	N/A	N/A	/volatile/clas12/s
dvcs-km15	fringe	у	outb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_km15_fringe/fall2018_outb	7199	/volatile/clas12	/s ongoing	/volatile/clas12/sa	angt ongoing
pi0	bulk+fringe	у	inb	/volatile/clas12/sangbaek/dvcs_related/submission_scripts/sim_rad_gen/pi0/pi0_inb_1	7230				
pi0	bulk+fringe	у	inb	/volatile/clas12/sangbaek/dvcs_related/submission_scripts/sim_rad_gen/pi0/pi0_inb_3	7251				
pi0	bulk+fringe	у	outb	/volatile/clas12/sangbaek/dvcs_related/submission_scripts/sim_rad_gen/pi0/pi0_outb_1	7256				
pi0	bulk+fringe	у	outb	/volatile/clas12/sangbaek/dvcs_related/submission_scripts/sim_rad_gen/pi0/pi0_outb_3	7293				
pi0	bulk+fringe	у	inb	/volatile/clas12/sangbaek/dvcs_related/submission_scripts/sim_rad_gen/pi0/pi0_outb_2	7281				
pi0	bulk+fringe	у	outb	/volatile/clas12/sangbaek/dvcs_related/submission_scripts/sim_rad_gen/pi0/pi0_inb_2	7246				
dvcs-vgg	bulk	у	inb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_vgg/fall2018_inb	7220				
dvcs-vgg	bulk	r	inb, N/A	/volatile/clas12/sangbaek/dvcs_related/sim_norad_gen/dvcs_vgg/fall2018_inb	N/A	N/A	N/A	N/A	
dvcs-vgg	fringe	у	inb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_vgg_fringe/fall2018_inb	waiting for	submission			
dvcs-vgg	bulk	у	outb	/volatile/clas12/sangbaekkdvcs_related/sim_rad_genktvcs_vgg/fall2018_outb	7311				
dvcs-vgg	bulk	r	outb, N/A	/volatile/clas12/sangbaek/dvcs_related/sim_norad_gen/dvcs_vgg/fall2018_outb	N/A	N/A	N/A	N/A	
dvcs-vgg	fringe	у	outb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_vgg_fringe/fall2018_outb	waiting for	submission			
pureBH	bulk	у	inb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/pureBH/fall2018_inb	7205				
pureBH	bulk	r	inb, N/A	/volatile/clas12/sangbaek/dvcs_related/sim_norad_gen/pureBH/fall2018_inb	N/A	N/A	N/A	N/A	
pureBH	fringe	у	inb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/pureBH_fringe/fall2018_inb	waiting for	submission			
pureBH	bulk	у	outb	/volatile/clas12/sangbaekkdvcs_related/sim_rad_gen/pureBH/fall2018_outb	7212				
pureBH	bulk	r	outb, N/A	/volatile/clas12/sangbaek/dvcs_related/sim_norad_gen/pureBH/fall2018_outb	N/A	N/A	N/A	N/A	
pureBH	fringe	у	outb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/pureBH_fringe/fall2018_outb	waiting for	submission			
dvcs-km15	bulk	у	inb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_km15/fall2018_inb2	waiting for	submission			/volatile/clas12/s
dvcs-km15	bulk	r	inb, N/A	/volatile/clas12/sangbaek/dvcs_related/sim_norad_gen/dvcs_km15/fall2018_inb2	N/A	N/A	N/A	N/A	/volatile/clas12/san
dvcs-km15	fringe	у	inb	/volatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_km15_fringe/fall2018_inb2	waiting for	submission			/volatile/clas12/s
dvcs-km15	bulk	у	outb	/volatile/clas12/sangbaekkdvcs_related/sim_rad_genktvcs_km15/fall2018_outb2	waiting for	submission			/volatile/clas12/s
dvcs-km15	bulk	r	outb, N/A	/volatile/clas12/sangbaek/dvcs_related/sim_norad_gen/dvcs_km15/fall2018_outb2	N/A	N/A	N/A	N/A	/volatile/clas12/s
dvcs-km15	fringe	у	outb	Avolatile/clas12/sangbaek/dvcs_related/sim_rad_gen/dvcs_km15_fringe/fall2018_outb2	waiting for	submission			/volatile/clas12/s
DVCS			inb	/cache/clas12/rg-a/production/recon/fall/2018/torus-1/pass1/v1/dst/train/DVCSWagon	N/A	/volatile/clas12	/sangbaek/dvcs_re	s N/A	N/A
Pi0			outb	/cache/clas12/rg-a/production/recon/fail2018/torus-1/pass1/v1/dst/train/DVPi0P	N/A	/volatile/clas12	/sangbaek/dvcs_r	N/A	N/A
DVCS			inb	/cache/clas12/rg-alproduction/recon/fall2018/torus+1/pass1/v1/dst/train/DVCSWagon	N/A	/volatile/clas12	/sangbaek/dvcs_r	N/A	N/A
Pi0			outb	/cache/clas12/rg-a/production/recon/fail2018/torus+1/pass1/v1/dst/train/DVPiOP	N/A	/volatile/clas12	/sangbaek/dvcs_r	B N/A	N/A
							_		

Other updates

- Consistency with the inclusive analysis
 - Electron momentum correction by Richard Capobianco
 - <u>https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_Corrections_from_richcap:All_Channels#tab=Correction_Code_28All_29</u>
 - Luminosity Attenuation factor for runs
- Proton energy loss at high polar angle for the Central Detector was updated to avoid the overcorrection
 - Attenuation factor for runs 5249–5340 should be corrected
 - 1.5% luminosity overestimation for the inbending runs

Background merging

- The efficiency depends on the beam current and can be effectively counted with the background merging
 - The effect of the background merging was studied at v2, and presented at the CCC+DPWG meeting.
- For the third iteration, so far, no background merging was used for maximizing the number of reconstructed events
 - The event counts multiplied by the efficiency studied at the v2, weighted by the charges in each beam current setting.
 - Inbending: 45 nA, 50 nA, 55 nA/ Outbending: 40 nA, 50 nA

Reconstructed Events

- Simulated events are normalized to
 - Luminosity × Phase space volume × Cross section/ Total events
 - See Pierre and Rafo's document on the normalization

https://clasweb.jlab.org/rungroups/tlc/wiki/image s/e/e7/Normalization MC Data-5.pdf

Normalization to the BH

- Simulated events are normalized to
 - Luminosity × Phase space volume × Cross section/ Total events
 - See Pierre and Rafo's document on the normalization <u>https://clasweb.jlab.org/rungroups/</u> <u>tlc/wiki/images/e/e7/Normalization</u> <u>MC Data-5.pdf</u>
- Applied normalization to the edge

Acceptance Correction

• Acceptance was corrected using the pure BH and the KM15 models

Extracted cross sections

- Statistical uncertainty only.
- Room for the bin center corrections.

Sources of Systematic Uncertainty (from v2 to v3)

Sources	V2 level (%)	How	Expected at v3
Event Selection — Exclusivity	11.8	Alternative exclusivity cuts	Similar
Event Selection — Particle ID	9.9	Alternative sampling fraction/ proton fiducial	Reduced
Resolution Matching	8.8	Alternative smearing factors	Similar
Acceptance Corrections	8.9	Alternative Acc. correction strategy	Similar
Background Estimation	12.8	Alternative Bkg. estimation strategy	Similar
Normalization	10	Matching with BH Matching at $\phi=0$ at the detector level	Reduced
Radiative Correction	3.5	Alternative CFF model	Increased
Bin Effect	3.6	Alternative CFF model	Increased
Inefficiency by Beam Current	4	Background Merging w/ random trigger	Reduced
Total	26.4		

Summary

- The updates to the RG-A DVCS cross section measurement analysis is presented
- The analysis is advanced and answering the review v2 is ongoing
- The analysis note will be submitted within a month with the manuscript draft