Update on RG-D Alignment and CT Analysis Status

Matthew Maynes Mississippi State University

CLAS Collaboration Meeting March 13th, 2024

Outline

Alignment Status

Color Transparency (CT) Analysis Status:

 $\circ \pi^+\pi^-$ Invariant Mass Distributions

 \circ Background-Subtracted ρ^0 Distributions

o Very Preliminary Nuclear Transparency Analysis Result

Summary and Outlook

Previous Alignment Results: z-Vertex Distribution

- The first peak corresponds to the upstream window of empty cryogenic cell.
- The second peak corresponds to the downstream window of empty cryogenic cell.

 Final RG-D alignment iteration awaits for the convergence of the calibration and alignment suites optimization efforts (See Daniel Carman CALCOM Update)

CT Analysis Status

• Kinematics for exclusive diffractive and incoherent ρ^0 electroproduction off nuclei.

 $\pi^{+}\pi^{-}$ mass distribution after kinematical cut for LD₂ target

Preliminary Fit using simple Briet Wigner and 5-D polynomial

 $\pi^{+}\pi^{-}$ mass distribution after kinematical cut for CxC target

Preliminary Fit using simple Briet Wigner and 5-D polynomial

- Subtract P5 from the total fit of $\pi^+\pi^-$ invariant mass distributions
- Extract ρ_0 yield by integrating the backgroundsubtracted peak from 0.6 to 1 GeV

- Subtract P5 from the total fit of $\pi^+\pi^-$ invariant mass distributions
- Extract ρ^0 yield by integrating the backgroundsubtracted peak from 0.6 to 1 GeV

Very Preliminary Nuclear Transparency

•Extracted nuclear transparency, $T_{A'}$ as

$$T_A = \frac{N_c^{\rho}}{N_D^{\rho}} \left(\frac{t_D \rho_D}{t_C \rho_C}\right)$$

where, •N_C is the rho yield for target CxC •N_D is the rho yield for target LD₂ • t_D = 5 cm is LD₂ thickness • t_C = 0.4 cm is CxC thickness • ρ_D = is the density of target LD₂ • ρ_C = is the density of target CxC

•Used a subset of 14 runs for each target configuration

Very Preliminary Nuclear Transparency

- Perform the last iteration of RG-D alignment
- Improve the statistical precision of T_A by processing the whole CxC and LD₂ datasets
- ◆ Extract the nuclear transparency results for other Cu and Sn nuclei

This work is supported by the US DOE award # DE-FG02-07ER41528v

clas

Jefferson Lab

End of Run Group D Party

Join us for a celebration marking the successful completion of Run Group D

Date: March 15, 2024 Time: 2:00 PM - 5:00 PM Venue: Residence Facility

For more info, please contact Lamiaa El Fassi (le334@msstate.edu)

