Raster Calibration Via Multi-Track Vertex Reconstruction

Derek Holmberg 3-12-24

Raster Calibration (RG-C)

- **Raster System:** Two dipoles deflect the electron beam in a spiral pattern to evenly distribute radiation dose over the target
- **Calibration:** Find conversion factor from the dipole current ADC signal to beam \bullet position
- Use multi-track vertex reconstruction to relate ADC signal to reconstructed particle \bullet vertices (detached vertex tracking)

Raster Calibration (RG-C)

- Detached Vertex Tracking: Process by which two coincidental particles (e^- and π^+) are extrapolated back to a common scattering vertex
- Offline analysis: performed on runs that have already been cooked
- CLARA micro-service package developed by Veronique Ziegler

Detached Vertex Finder Algorithm

minimal

- 1. For each track
 - 1. Swim backwards to fixed Z to get starting point of trajectory
 - 2. Swim forward to fixed Z to get starting point of trajectory
- 2. Compute Doca of track2(1) to track1(2) obtained from swimming track2(1) where the swimming is stopped when the Doca to trajectory2(1) is minimal
- 3. Compute r as the distance between the so-obtained doca points of each track

Slide Credit: Veronique Ziegler

Detached Vertex Finder Algorithm

- 1. For each track
 - 1. Swim backwards to fixed Z to get starting point of trajectory
 - 2. Swim forward to fixed Z to get starting point of trajectory
- 2. Compute Doca of track2(1) to track1(2) obtained from swimming track2(1) where the swimming is stopped when the Doca to trajectory2(1) is minimal
- 3. Compute r as the distance between the so-obtained doca points of each track

vertex used in analysis

Calibration Constants:

- Plot extracted x, y vertices vs. $ADC_{x,y}$ signals and fit data directly to a straight line
- $V_{x,y} = P_0 + P_1 * ADC_{x,y}$
- Converts raster signal (ADC) to vertex position
- Two constants each for x, y (four total for each data set)

Run 16296: Plot of Vy vs. ADCy

6

Calibration Constants:

- Plot extracted x, y vertices vs. $ADC_{x,y}$ signals and fit data directly to a straight line
- $V_{x,y} = P_0 + P_1 * ADC_{x,y}$
- Converts raster signal (ADC) to vertex position
- Two constants each for x, y (four total for each data set)

• Profile fit:

- Break data set up into 10 separate ADC bins (between green lines) to account for non-gaussian distributions
- Fit each of the bins to a double gaussian to find average vertex for the ADC signal bin
- Fit results using $V_{x,y} = P_0 + P_1 * ADC_{x,y}$

7

Run 16296: Plot of Vy vs. ADCy

Calibration Constants:

- Plot extracted x, y vertices vs. $ADC_{x,y}$ signals and fit data directly to a straight line
- $V_{x,y} = P_0 + P_1 * ADC_{x,y}$
- Converts raster signal (ADC) to vertex position
- Two constants each for x, y (four total for each data set)

• Profile fit:

- Break data set up into 10 separate ADC bins (between green lines) to account for non-gaussian distributions
- Fit each of the bins to a double gaussian to find average vertex for the ADC signal bin
- Fit results using $V_{x,y} = P_0 + P_1 * ADC_{x,y}$

Run 16296: Plot of Vy vs. ADCy

8

*ADC*_Y Bin: 1828.2

• Fit data with double gaussian

$$- G(V_i) = A_1 * \exp\left(\frac{\mu - V_i}{\sigma_1}\right)^2 + A_2 * \exp\left(\frac{\mu - V_i}{\sigma_2}\right)^2 \text{ for } divergence in the set of the$$

- Fitting Procedure:
 - 1. Fit distribution to a single gaussian
 - 2. Use parameters from that fit to initialize double gaussian
 - 3. Fit again with double gaussian
- Plot μ (*cm*) *vs*. *ADC* signal
- Bin ADC signal taken as average ADC value for the bin
- Error on mean is $\delta \mu = \sigma_1 / \sqrt{N}$, N = number of counts in the histogram

 μ = reconstructed vertex for fixed ADC signal

*ADC*_Y Bin: 1828.2

Run 16296: Plot of V_X vs. ADC_X

Run 16296: Plot of V_Y vs. ADC_Y

- Cuts to the Data:
 - $-e^{-}$ seen in DC, π^{+} seen in CVT
 - $-\chi^2_{pid} < 3$ for e^-, π^+
 - $-8 cm < V_z < 2 cm$, $|V_{x,v}| < 2.05 cm$ for all data points
 - Separation distance $0 \ cm < \Delta R < 1.0 \ cm$
- All the data came from the first 20 HIPO files of the runs, and no additional \bullet kinematic cuts were made (i.e. no SIDIS skims, DVCS skims, etc.)

Running the Analysis

- Analyzed all runs over the entire Summer '22 run period (inbending electrons)
 - Using roughly 330 runs from across the run period
 - Calibration, empty target, luminosity scans skipped
 - /volatile/clas12/rg-c/production/pass0/mon/v0.17/mon/recon ____
- Runs ranging from 16128 to 16772 \bullet
 - Runs 16292 16297 from /v0.15/ directory
 - Carbon, NH3, and ND3 runs were used
- Used events where e^- is in the forward detector, π^+ is in the central detector $-\pi^{+}\pi^{-}$ cases had too few events (<1000 per run) to have useful results
- Used analysis procedure as outlined, fitting to $V_{x,y} = P_0 + P_1 * ADC_{x,y}$

13

Calculating Average Beam Position

- Average beam position is the average position of the beam over the entire run \bullet
- For each of the runs, I calculated the average value of all ADC signals measured \bullet $ADC_{run} = \sum_i ADC_i / N$, N = total counts over run
- Plotted $P_0 + P_1 * ADC_{run}$ for X,Y using my raster calibration constants •
- Also plotted against $P_0 + P_1 * ADC_{run} + B$ using the values currently in CCDB, where B is the beam offset

$P_0 + P_1 * ADC$ (Average Beam Position)

$P_0 + P_1^*ADC_y$ vs. Run Number

- NH3 Runs
- ND3 Runs

ADC values used for the plots are the average value across the first 20 HIPO files

Work Still To Be Done

- Recooked multiple runs using my raster calibration constants; carbon foil runs 16296, 16297 and empty target run 16194
- Plot the reconstructed vertex distributions to check for any systematic effects of the calibration \bullet
- My Raster Calibration Values:

 $-P_{0,X} = -1.984, P_{1,X} = 0.0009487; P_{0,Y} = 2.299, P_{1,Y} = -0.0010739$

- Beam Offset: All Zero
- Current Raster CCDB Values:

 $-P_{0,X} = -2.29552 P_{1,X} = 0.001004; P_{0,Y} = 2.29812, P_{1,Y} = -0.001162$

- Beam Offset: $X_{offset} = 0.1544833$; $Y_{offset} = 0.150292$ —
- Still a work in progress; checking slight discrepancies in vertex distributions

Any Questions?

Backup Slides

- What do the histograms look like? lacksquare
- Effects of binning on raster calibration constants ${\color{black}\bullet}$
- Changes in reconstructed vertices using my constants versus what's in CCDB

Backup Slides

- What do the histograms look like?
- Effects of binning on raster calibration constants
- Changes in reconstructed vertices using my constants versus what's in CCDB

Run 16296: X-Vertex Histograms

Run 16296: 2D Histograms

 V_X vs. ADC_X

V_Y vs. ADC_Y

(Same as Before)

Run 16296: Plot of V_X vs. ADC_X

Run 16296: Plot of V_Y vs. ADC_Y

Backup Slides

- What do the histograms look like?
- Effects of binning on raster calibration constants
- Changes in reconstructed vertices using my constants versus what's in CCDB

- Current goal is to recook at least one run using the raster calibration constants calculated \bullet using my method
- However, I investigated how binning the ADC data would affect the extracted constants \bullet
 - Does the ADC value used for the bin affect the constants?
 - Does the number of data points in each bin affect the constants? Does the number of bins used affect the constants?
- My old method had some issues, but I believe they may be fixed now!

- Plot extracted x, y vertices vs. $ADC_{x,y}$ signals and perform profile ۲ fits to find $V_{x,y} = P_0 + P_1 * ADC_{x,y}$
- **Old method**: partition data into 10 bins, with the ADC value used to represent that bin taken as the average of the bin edges: $ADC_{bin} = (ADC_i + ADC_{i+1})/2$

Run 16700 X-Vertex vs. ADC_x

- Plot extracted x, y vertices vs. $ADC_{x,y}$ signals and perform profile • fits to find $V_{x,v} = P_0 + P_1 * ADC_{x,v}$
- **Old method**: partition data into 10 bins, with the ADC value used to represent that bin taken as the average of the bin edges: $ADC_{hin} = (ADC_i + ADC_{i+1})/2$
- **New method**: use the average value of ADC signal in each bin instead of central value: $ADC_{bin} = \sum_{i}^{N} ADC_{i} / N$
 - N = number of data points in bin •

Run 16700 X-Vertex vs. ADC_v

- Plot extracted x, y vertices vs. $ADC_{x,y}$ signals and perform profile ۲ fits to find $V_{x,v} = P_0 + P_1 * ADC_{x,y}$
- **Old method**: partition data into 10 bins, with the ADC value used to represent that bin taken as the average of the bin edges: $ADC_{hin} = (ADC_i + ADC_{i+1})/2$
- **New method**: use the average value of ADC signal in each bin instead of central value: $ADC_{bin} = \sum_{i}^{N} ADC_{i} / N$
 - N = number of data points in bin
- **Another Method**: use modulated bin widths so that each bin contains roughly the same number of data points
- Tested all of these using fixed and modulated bins ullet
- Also used tighter vertex cut: $-8 \ cm < V_z < 2 \ cm$, $|V_{x,v}| < 2.05 \ cm$ \bullet

Run 16700 X-Vertex vs. ADC_x

Updates From Last Time

- Using the average ADC signal for each bin gave consistent results, no matter the binning \bullet
- Should we use these new values for any future cooking? \bullet

Backup Slides

- What do the histograms look like?
- Effects of binning on raster calibration constants
- Changes in reconstructed vertices using my constants versus what's in CCDB

Work Still To Be Done

- Made new cuts to the data:
 - $V_X^2 + V_Y^2 < 10 \ cm^2$, $-8 \ cm < V_Z < 2 \ cm$
 - All particles have $\chi^2_{pid} < 3$, e^- seen in the FD, π^+ seen in the CD
 - Made cuts to the track reconstruction $\chi^2_{red} \equiv \chi^2_{track}/NDF < 10.0$ —
- New method: for π^+ , use vertices from REC::UTrack instead of REC::Track Made new plots for runs 16296, 16297 using REC::UTrack and comparing it to REC::Track
- Also made plots for for run 16194 (using REC::UTrack for π^+)
- Using REC::UTrack didn't shift the z-vertices of the π^+ , but it was harder to tell if the x,y vertices shifted
 - Poor results for the gaussian fits of x,y vertices
 - There does seem to be some sort of small shift, but it's hard to explicitly quantify

