
N. Baltzell - March 12, 2024

Helicity Updates
CLAS Collaboration Meeting

1

Introduction
• The polarization of CEBAF's electron beams is

generated and controlled in the injector, with helicity the
polarization direction, parallel or anti-parallel

• To reduce systematic errors, helicity is changed rapidly
and automatically, systematically and pseudorandomly

• different, configurable pattern types and clock frequencies,
most commonly "quartet" and 30 Hz

• To get the current helicity state in experiments, optical
fibers are routed from the injector to each hall's DAQ

• this includes the helicity state, of course, plus 3 "control"
signals for, e.g., vetoing during transitions, selecting state
pairs, integrity checking the sequence, seeding the
pseudorandom generator

• To further reduce systematic errors, the signals can also
be (heavily) delayed, called "delayed reporting"

• by a multiple of the clock frequency, most commonly 8
"windows" (1/4 second at 30 Hz)

• that's a complication for trigger/event-based paradigm,
traditionally addressed in software

Helicity

Pair

Settle

Pattern

(quartet)

One "window"

It's delayed helicity is over here

2

Helicity Delay Correction The "online" and "offline" corrections normally give the same
result, with some minor glitches in the online one, except in cases

of high deadtime (?) where the sequence gets lost and takes
longer to reinitialize online than offline.

The pseudorandom sequence is based on a 30-bit seed from the
previous helicity states, and then predicts into the infinite future, based

on some fast bitwise manipulations and number of windows.

• With delayed reporting, one needs more information than
just a snapshot in time of the "live" helicity signals

• Minimally, N, time-ordered, helicity windows, and counting state
changes and integrity checking ...

• One can use the pseudorandom generator sequence, where N = 120
or 3.5 seconds, before the given event

• Or, if you can see into the future, walk forward in the measured
sequence, where N = 8, or 0.25 seconds, right after the given event

* for the most common delay=8, pattern=quartet, clock=30 Hz

• We do both, based on FADC readout of the "live" helicity
signals in every trigger/event (which requires trigger rate >>
helicity clock)

• Online: HEL::online, based on the pseudorandom generator,
done in "L3"

• Offline: HEL::flip → postprocessing → REC::Event,
based on the measured sequence, if it matches the
pseudorandom generator if seeded

• We also have other approaches available, e.g., triggering on helicity state changes, using a
multi-channel, helicity-latching scaler, but all have their own complications and never really
get rid of the "more information" problem above

3

Event Ordering (1)

• First noticed in low efficiency of the offline helicity delay
correction, which requires time-ordered events.

• Online monitoring efficiency is currently too low to really
be sensitive to it. Would need much more performant
EVIO→HIPO conversion.

• And the online delay correction sees the events prior to
this ET-induced misordering, so it's also insensitive.

ET Configuration Fixed

Note, here the offline correction was is performed on single files,
hence the lower maximum efficiency.

4

• The CODA system, at least the way Hall B
uses it, is designed such that events
recorded in EVIO files should always be
time-ordered

• We have seen misordering in the
past, on occasion, but not enough to
have significant impact

• But between October 2023 and January
2024, one ET ring, the one used for online
monitoring, was in an incorrect
configuration, blocking versus non-blocking.

• The result is large event
misordering, quantized in blocks of
10 events. Even seen mixing
events across runs (probably,
hopefully very rare)!

• There's also some event loss, not yet
fully quantified, seen to be up to ~1%
in some cases.

Event Ordering (2)
• Why not "just forget about the offline"

correction and rely only on the unaffected
online?

• Well, we've already got it, and it's required for
multiple CLAS12 data sets when the online
version isn't available, so it's best to try to keep
it working for all, at least as a cross check.

• So, as of COATJAVA 10.0.6, https://github.com/JeffersonLab/coatjava/releases/tag/10.0.6

• Now time-sorting helicity states during the EVIO→HIPO transition (and ignoring events from other run
numbers), essentially by reading (the minimal information) from every event twice and buffering it in
between. Negligible computing resource overhead. Should have been doing it anyway ...

• Considered also writing out the HIPO events sorted, but since CLARA will unsort them downstream
anyway, decided it better to minimize data manipulation and preserve their EVIO ordering.

• Also added efficiency of the online and offline delay corrections to clas12mon timelines.

5

https://github.com/JeffersonLab/coatjava/releases/tag/10.0.6

Helicity Decoder (HD) Board
• Developed by Ed Jastrzembski in the Fast Electronics group at JLab

• Intended to be the end of all helicity delay corrections at Jlab, and critical to support the large helicity clock rates required for high-precision,
parity experiments (where helicity clock ~ trigger rate in Hall B)

time
32-bit sequence

false advance

Also, added to online
monitoring and timelines

• Latches on helicity control signals, buffers the previous N windows
of all helicity signals, and on every readout provides everything
necessary to delay correct the current event based on the
pseudorandom sequence, plus lots of additional information for
debugging, integrity checking,

• Using it in Hall B

• EVIO→HIPO decoding by Raffaella and Maurik

• On first analysis, we (re)learned our signals are inverted

• → HD firmware update #1 - configurable input/output
polarity (thanks Ed!)

• After that, things look great and agree with our other delay
corrections, most of the time.

• We see something consistent with occasional noise, every few
minutes, causing false state advance and corrupting 4 seconds
(with an 8 ns clock, it's much more sensitive than our trigger-
based approaches)

• → HD firmware update #2 - optional noise filtering

• Next, more testing, closer inspection of the optical signals ...
6

Summary

• Helicity delay corrections have been working for a few years, but hit a surprise
with heavily misordered events during RG-D

• The root cause was eventually found and fixed, meanwhile it corrupted
our offline helicity delay correction, addressed in COATJAVA 10.0.6

• Also added better monitoring of online delay correction and new helicity
decoder board, both in mon12 and timelines

• The new helicity decoder board seems very close to ready for production, and
is expected to make helicity delay corrections a non-issue

7

