

Iguana
Implementation Guardian of Analysis Algorithms

Christopher Dilks
CLAS Collaboration Meeting 12 March 2024

image source

https://github.com/JeffersonLab/iguana

https://commons.wikimedia.org/wiki/File:Iguana_iguana_Portoviejo_02.jpg
https://github.com/JeffersonLab/iguana

C. Dilks Analysis Tools: Iguana 2

The Problem

Diverse set of Fiducial Cuts implementations

– Original versions In C++

– Ports to Java, Python, and Fortran

– Integrations in common frameworks, e.g., Chanser

– Integrations in user analysis code

→ Highlights the importance of cross checking

Fiducial cuts are among a set of common “things” → in general, “algorithms”

– Many analyzers need to use them, with varying configurations (e.g., tight vs. loose cuts)

– Other common algorithms include Momentum Corrections and PID Refinements

– RG-A analyses refer to the common RG-A Analysis Note, and some common algorithms have been rewritten
independently by each analyzer

https://github.com/dglazier/chanser/tree/master
https://www.jlab.org/Hall-B/shifts/index.php?display=admin&task=paper_review&rid=6245173&operation=view

C. Dilks Analysis Tools: Iguana 3

What do we mean by Algorithm?

Input Banks
REC::Particle

REC::Calorimeter

…

Filtered Output Bank

REC::Particle,
filtered by fiducial cuts

Fiducial Cuts

We define “Algorithm” as a function that maps a set of input banks to a set of output banks

For example, a Filter

C. Dilks Analysis Tools: Iguana 4

What do we mean by Algorithm?

Input Banks
REC::Particle

REC::Calorimeter

…

Modified Output Bank

REC::Particle,

with corrected momenta

Momentum Corrections

Or a Modifier

Input Banks
REC::Particle

REC::Calorimeter

…

New Output Bank

physics::InclusiveKinematics,

with x, Q2, W, etc.

Inclusive Kinematics
Reconstruction

Or a Creator

C. Dilks Analysis Tools: Iguana 5

A Solution: Centralizing the Algorithms

Encapsulate, centralize, and preserve common needs in Iguana Algorithms

– Methodology preservation (cf. data preservation efforts)

– Reproducibility

– Allow for focus on the important parts of an analysis

– Centralization increases the number of code reviewers
● Lower probability of bugs
● But if there are bugs, they impact all users

● Validation is critical

C. Dilks Analysis Tools: Iguana 6

Why the name?

Unique namespace

Easier to reference, as opposed to a generic name such as
clas12-common-analysis-algorithms

Naming things is hard, so why not be creative?

Iguana
Implementation Guardian of Analysis Algorithms

C. Dilks Analysis Tools: Iguana 7

User-centered design → Software Survey

C. Dilks Analysis Tools: Iguana 8

Algorithm Methods
All algorithms must
implement the
following 3 methods:

 9

Hold on… I don’t use HIPO banks!

Algorithm Run Method

Or:

I use HIPO banks, but not the C++ hipo banks from gavalian/hipo

I use HIPO banks with a different library or language

I use data frames from gavalian/hipo or elsewhere

I have info from the banks (bank row elements)

The relevant part of my code is not in C++

A goal of Iguana is to support diverse analyses, including all of the above use cases

- Action functions permit operation on bank rows

- Language bindings (will) permit usage from other programming languages

https://github.com/gavalian/hipo
https://github.com/gavalian/hipo

 10

Action Functions

Filter is an Action Function

● Action functions operate on bank row elements

● int, float, double, etc.

● Expose the primary algorithm functionality to the
general user

● Unique to each algorithm; not standardized...

C. Dilks Analysis Tools: Iguana 11

Bindings
Iguana algorithms are in C++

We plan to support other languages via language bindings:

– Python

– Java

– Fortran

For Python, we currently use cppyy: https://cppyy.readthedocs.io/en/latest/

– ROOT’s Python bindings, PyROOT, uses cppyy

– Easy to implement, but our experience is that it is also easy to break

– Planning to replace with something more robust

– For now, this gives us some API design guidance: make it simple

https://cppyy.readthedocs.io/en/latest/

C. Dilks Analysis Tools: Iguana 12

Class Diagram

C. Dilks Analysis Tools: Iguana 13

Class Diagram

Something
with a name
and a Logger

C. Dilks Analysis Tools: Iguana 14

Class Diagram

Algorithm base class:
common infrastructure stuff
needed by all algorithms

C. Dilks Analysis Tools: Iguana 15

Class Diagram

The algorithms

C. Dilks Analysis Tools: Iguana 16

Class Diagram

Algorithm validators
(so far the only 2)

Validator
base class

C. Dilks Analysis Tools: Iguana 17

Class Diagram

A sequence of algorithms,
defined by the user

C. Dilks Analysis Tools: Iguana 18

Class Diagram

Algorithm
configuration defined
by YAML files

C. Dilks Analysis Tools: Iguana 19

Available Algorithms

C. Dilks Analysis Tools: Iguana 20

Planned Algorithms
Fiducial cuts (… any volunteers…?)

– Just need to “copy and paste” the “right” version

– Good opportunity to learn how to implement an algorithm, in case you are
thinking of implementing your own algorithm

FT Energy Corrections (Asli)

– https://github.com/JeffersonLab/iguana/pull/85

Lepton ID (Mariana & Pierre)

– ROOT TMVA

Semi-inclusive single-hadron kinematics (Chris)

– Preservation of kinematics reconstruction

https://github.com/JeffersonLab/iguana/pull/85

C. Dilks Analysis Tools: Iguana 21

Planned Infrastructure Changes
HIPO bank iterators

– Currently: filtering a bank just sets PID to -1

– Obviously not a good idea; this is just temporary

– Upgrading to “HIPO Iterators” will permit filtering
● Loop over bank rows → use an iterator instead

● Only rows which pass the filter will be looped over

Change Run

– Some configurations are run dependent

– Plan to add a general “Change Run” function to take care of this in a thread-safe way

Other plans and issues: https://github.com/JeffersonLab/iguana/issues

https://github.com/JeffersonLab/iguana/issues

C. Dilks Analysis Tools: Iguana 22

Algorithm Configuration
Algorithm configuration is defined
in YAML files

Modifiable without rebuilding Iguana

May be overridden by user’s
configuration files, or on-the-fly in the
code

Standard format → programmatically
modifiable

Generalized tree structure:
● Nested configurations
● Dependent configurations, e.g., on

run range or on PDG

C. Dilks Analysis Tools: Iguana 23

Automated Testing

Continuous Integration (CI) tests via GitHub Actions

Build and test Iguana on Linux and macOS

Tests examples and all algorithms

– At least each algorithm ‘Run’ call is tested

– Some algorithms have additional “Validators”

Additional tests and automation:

– Coverage: reports how much of the code is tested, and what lacks tests

– Sanitizers: detects memory leaks, uninitialized reads, overflows, data races, etc.

– Documentation generation: all C++ code is required to be documented

C. Dilks Analysis Tools: Iguana 24

Validator: Momentum Corrections

cf. plots from
https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_Corrections#tab=Electron_Corrections__28Plots_29_-_Inbending

The momentum correction
validator just makes plots,
so its up to a human to
check them

Reproducibility checking
may be better done with
unit tests

Planning on automatically
deploying all such plots on
a webpage

https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_Corrections#tab=Electron_Corrections__28Plots_29_-_Inbending

C. Dilks Analysis Tools: Iguana 25

Validator: Inclusive Kinematic Calculations

Inclusive kinematics distributions; no cuts applied (yet)

C. Dilks Analysis Tools: Iguana 26

By the way… this is a “Creator” Algorithm

iguana::physics::InclusiveKinematics creates and fills a new bank (schema)

Example for 1 event:

index of the scattered electron

virtual photon momentum

C. Dilks Analysis Tools: Iguana 27

Validation: You!

We’re a collaboration, and Iguana is Open Source

Iguana is not a black box

You are encouraged to be skeptical of algorithms and to check them

Please report and/or fix any issues

C. Dilks Analysis Tools: Iguana 28

Want to try Iguana? https://github.com/JeffersonLab/iguana

Available from the new Alma9 interactive node
– Procedure:

ssh ifarm9.jlab.org
source /group/clas12/packages/setup.csh
module load iguana/0.4.0

– Warning: some things are missing from this build…

Source code available on GitHub
– https://github.com/JeffersonLab/iguana

– Build it yourself

https://github.com/JeffersonLab/iguana
https://github.com/JeffersonLab/iguana

C. Dilks Analysis Tools: Iguana 29

If you build it yourself...

meson: build system generator

hipo: C++ HIPO API
● You may need the latest version on the `master` branch, since the latest release

lacks some features now required by Iguana

fmt: for printout messages

yaml-cpp: for YAML configuration files

ROOT (optional)
● If you don’t have it, algorithms which need it won’t be built

Dependencies

Guidance:
https://github.com/JeffersonLab/iguana/blob/main/doc/setup.md#dependencies

https://github.com/JeffersonLab/iguana/blob/main/doc/setup.md#dependencies

C. Dilks Analysis Tools: Iguana 30

Contributions are Welcome
We follow the usual GitHub workflow
● Issues: planned work, bugs, feature requests, …
● Pull Requests: new code, fixed code, …

You may also contact the CLAS Software Group
● Via email
● My email: dilks AT jlab DOT org
● Post in the CLAS Discourse: https://clas12.discourse.group/

New algorithms and ideas are welcome!

https://github.com/JeffersonLab/iguana

image source

https://clas12.discourse.group/
https://github.com/JeffersonLab/iguana
https://commons.wikimedia.org/wiki/File:Iguana_iguana_Portoviejo_02.jpg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

