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The Problem

Diverse set of Fiducial Cuts implementations

– Original versions In C++

– Ports to Java, Python, and Fortran

– Integrations in common frameworks, e.g., Chanser

– Integrations in user analysis code

→ Highlights the importance of cross checking

Fiducial cuts are among a set of common “things” → in general, “algorithms”

– Many analyzers need to use them, with varying configurations (e.g., tight vs. loose cuts)

– Other common algorithms include Momentum Corrections and PID Refinements

– RG-A analyses refer to the common RG-A Analysis Note, and some common algorithms have been rewritten 
independently by each analyzer

https://github.com/dglazier/chanser/tree/master
https://www.jlab.org/Hall-B/shifts/index.php?display=admin&task=paper_review&rid=6245173&operation=view
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What do we mean by Algorithm?

Input Banks
REC::Particle

REC::Calorimeter

…

Filtered Output Bank

REC::Particle, 
filtered by fiducial cuts

Fiducial Cuts

We define “Algorithm” as a function that maps a set of input banks to a set of output banks

For example, a Filter
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What do we mean by Algorithm?

Input Banks
REC::Particle

REC::Calorimeter

…

Modified Output Bank

REC::Particle, 

with corrected momenta

Momentum Corrections

Or a Modifier

Input Banks
REC::Particle

REC::Calorimeter

…

New Output Bank

physics::InclusiveKinematics, 

with x, Q2, W, etc.

Inclusive Kinematics
Reconstruction

Or a Creator
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A Solution: Centralizing the Algorithms

Encapsulate, centralize, and preserve common needs in Iguana Algorithms

– Methodology preservation (cf. data preservation efforts)

– Reproducibility

– Allow for focus on the important parts of an analysis

– Centralization increases the number of code reviewers
● Lower probability of bugs
● But if there are bugs, they impact all users

● Validation is critical
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Why the name?

Unique namespace

Easier to reference, as opposed to a generic name such as 
clas12-common-analysis-algorithms

Naming things is hard, so why not be creative?

Iguana
Implementation Guardian of Analysis Algorithms
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User-centered design → Software Survey
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Algorithm Methods
All algorithms must 
implement the 
following 3 methods:
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Hold on… I don’t use HIPO banks!

Algorithm Run Method

Or:

I use HIPO banks, but not the C++ hipo banks from gavalian/hipo

I use HIPO banks with a different library or language

I use data frames from gavalian/hipo or elsewhere

I have info from the banks (bank row elements)

The relevant part of my code is not in C++

A goal of Iguana is to support diverse analyses, including all of the above use cases

- Action functions permit operation on bank rows

- Language bindings (will) permit usage from other programming languages

https://github.com/gavalian/hipo
https://github.com/gavalian/hipo
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Action Functions

Filter is an Action Function

● Action functions operate on bank row elements

● int, float, double, etc.

● Expose the primary algorithm functionality to the 
general user

● Unique to each algorithm; not standardized...
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Bindings
Iguana algorithms are in C++

We plan to support other languages via language bindings:

– Python

– Java

– Fortran

For Python, we currently use cppyy: https://cppyy.readthedocs.io/en/latest/

– ROOT’s Python bindings, PyROOT, uses cppyy

– Easy to implement, but our experience is that it is also easy to break

– Planning to replace with something more robust

– For now, this gives us some API design guidance: make it simple

https://cppyy.readthedocs.io/en/latest/
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Class Diagram
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Class Diagram

Something 
with a name 
and a Logger
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Class Diagram

Algorithm base class:
common infrastructure stuff 
needed by all algorithms
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Class Diagram

The algorithms
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Class Diagram

Algorithm validators 
(so far the only 2)

Validator 
base class
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Class Diagram

A sequence of algorithms, 
defined by the user
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Class Diagram

Algorithm 
configuration defined 
by YAML files
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Available Algorithms
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Planned Algorithms
Fiducial cuts (… any volunteers…? )

– Just need to “copy and paste” the “right” version

– Good opportunity to learn how to implement an algorithm, in case you are 
thinking of implementing your own algorithm

FT Energy Corrections (Asli)

– https://github.com/JeffersonLab/iguana/pull/85

Lepton ID (Mariana & Pierre)

– ROOT TMVA

Semi-inclusive single-hadron kinematics (Chris)

– Preservation of kinematics reconstruction

https://github.com/JeffersonLab/iguana/pull/85
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Planned Infrastructure Changes
HIPO bank iterators

– Currently: filtering a bank just sets PID to -1

– Obviously not a good idea; this is just temporary

– Upgrading to “HIPO Iterators” will permit filtering
● Loop over bank rows → use an iterator instead

● Only rows which pass the filter will be looped over

Change Run

– Some configurations are run dependent

– Plan to add a general “Change Run” function to take care of this in a thread-safe way

Other plans and issues: https://github.com/JeffersonLab/iguana/issues

https://github.com/JeffersonLab/iguana/issues
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Algorithm Configuration
Algorithm configuration is defined 
in YAML files

Modifiable without rebuilding Iguana

May be overridden by user’s 
configuration files, or on-the-fly in the 
code

Standard format → programmatically 
modifiable

Generalized tree structure:
● Nested configurations
● Dependent configurations, e.g., on 

run range or on PDG
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Automated Testing

Continuous Integration (CI) tests via GitHub Actions

Build and test Iguana on Linux and macOS

Tests examples and all algorithms

– At least each algorithm ‘Run’ call is tested

– Some algorithms have additional “Validators”

Additional tests and automation:

– Coverage: reports how much of the code is tested, and what lacks tests

– Sanitizers: detects memory leaks, uninitialized reads, overflows, data races, etc.

– Documentation generation: all C++ code is required to be documented
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Validator: Momentum Corrections

cf. plots from
https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_Corrections#tab=Electron_Corrections__28Plots_29_-_Inbending

The momentum correction 
validator just makes plots, 
so its up to a human to 
check them

Reproducibility checking 
may be better done with 
unit tests

Planning on automatically 
deploying all such plots on 
a webpage

https://clasweb.jlab.org/wiki/index.php/CLAS12_Momentum_Corrections#tab=Electron_Corrections__28Plots_29_-_Inbending
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Validator: Inclusive Kinematic Calculations

Inclusive kinematics distributions; no cuts applied (yet)
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By the way… this is a “Creator” Algorithm

iguana::physics::InclusiveKinematics creates and fills a new bank (schema)

Example for 1 event:

index of the scattered electron

virtual photon momentum
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Validation: You!

We’re a collaboration, and Iguana is Open Source

Iguana is not a black box

You are encouraged to be skeptical of algorithms and to check them

Please report and/or fix any issues
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Want to try Iguana? https://github.com/JeffersonLab/iguana

Available from the new Alma9 interactive node
– Procedure:

ssh ifarm9.jlab.org
source /group/clas12/packages/setup.csh
module load iguana/0.4.0

– Warning: some things are missing from this build…

Source code available on GitHub
– https://github.com/JeffersonLab/iguana

– Build it yourself

https://github.com/JeffersonLab/iguana
https://github.com/JeffersonLab/iguana
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If you build it yourself...

meson: build system generator

hipo: C++ HIPO API
● You may need the latest version on the `master` branch, since the latest release 

lacks some features now required by Iguana

fmt: for printout messages

yaml-cpp: for YAML configuration files

ROOT (optional)
● If you don’t have it, algorithms which need it won’t be built

Dependencies

Guidance:
https://github.com/JeffersonLab/iguana/blob/main/doc/setup.md#dependencies

https://github.com/JeffersonLab/iguana/blob/main/doc/setup.md#dependencies
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Contributions are Welcome
We follow the usual GitHub workflow
● Issues: planned work, bugs, feature requests, … 
● Pull Requests: new code, fixed code, …

 
You may also contact the CLAS Software Group
● Via email
● My email: dilks AT jlab DOT org
● Post in the CLAS Discourse: https://clas12.discourse.group/

New algorithms and ideas are welcome!

https://github.com/JeffersonLab/iguana
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