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Many-core saga

• CPU frequency had come to 
plateau in 2005. Number of 
transistors you can buy per $ 
is still growing.
－Many core

• Size of memory you can buy 
per $ is not increasing as fast 
as number of transistors.
－Memory size per core is 

shrinking.
• Naïve parallel processing of 

many jobs won’t work.
－Requires multithreading 

application with shared 
memory.
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Memory consumption on Intel Xeon Phi
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Scalability on Intel Xeon Phi
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Geant4 evolutions in parallelization

1.  Sequential mode : original since Geant4 v1.0
－Single core (thread) does everything

2.  Multithreaded event-level parallelism mode : since Geant4 v10.0 (Dec.2013)
－Taking the advantage of independence of events, many cores (threads) 

process events in parallel (event-level parallelism)
－Geometry / x-section tables are shared over threads

3.  Task-based event-level parallelism mode : since Geant4 v11.0 (Dec.2021)
－Decoupling task (event loop) from thread
－More flexible load-balancing

4.  Task-based sub-event parallel mode : planned (Dec.2024~)
－Split an event into sub-events and task them separately
－Sub-event : 

• Group of tracks of selected kinds or getting into a particular detector 
component 

－Suitable for heterogeneous hybrid hardware
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Geant4 as a detector simulation engine
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Sequential mode 
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Sequential mode
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Geant4 as a detector simulation engine
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Multi-threaded mode
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Shared? Thread-local?

• In the multi-threaded mode, generally saying, data that are stable during the event loop 
are shared among threads while data that are transient during the event loop are thread-
local. 

• In general, geometry and physics tables are shared, while event, track, step, trajectory, 
hits, etc., as well as several Geant4 manager classes such as EventManager, 
TrackingManager, SteppingManager, TransportationManager, FieldManager, Navigator, 
SensitiveDetectorManager, etc. are thread-local. 
－Classes that have cache should be thread-local. 

• Among the user classes, user initialization classes (G4VUserDetectorConstruction, 
G4VUserPhysicsList and newly introduced G4VUserActionInitialization) are shared, while 
all user action classes and sensitive detector classes are thread-local. 
－ It is not straightforward (and thus not recommended) to access from a shared class 

object to a thread-local object, e.g. from detector construction to stepping action. 
－Please note that most of thread-local objects are instantiated and initialized at the 

first BeamOn. 
• To avoid potential errors, it is advised to always keep in mind which class is shared and 

which class is thread-local.
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Task-based parallel mode 

• Since Geant4 version 11.0.
• Decoupling task (event loop) from thread.
• Geant4 supports tasking model with two different backend threading libraries.
－PTL (Parallel Tasking Library) : light-weight C++11/14 tasking system
－TBB (Intel Thread Building Blocks)

• Typically, number of tasks is much larger than the number of available threads.
－For flexible load-balancing

• User code that works with the original multithreading mode does not need any 
migration.
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Task-based parallel mode
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G4RunManagerFactory

• Since version 11.0, Geant4 introduced task-based event parallelism.
• There are four different running modes available
－Sequential mode
－Multithreaded mode by Posix thread 

• was default in version 10 series
－Task-based multithread mode by PTL (Parallel Tasking Library)

• default
－Task-based multithread mode by Intel TBB (Threading Building Blocks)

• RunManager can be instantiated by G4RunManagerFactory with 
preferred threading option.

auto* runManager =     
 G4RunManagerFactory::CreateRunManager();

• Type of RunManager can be specified by the shell variable 
$G4RUN_MANAGER_TYPE
－Serial, MT, Threading, TBB

• You may still use the explicit constructors such as G4MTRunManager.
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G4cout in multithreaded mode

• By default, every G4cout string is displayed on the screen in the order 
as it is generated.
－A line made by a worker thread is preceded by the worker identifier.

• It is not very readable if lines of several worker threads interleave. 
/control/cout/ignoreThreadsExcept <threadID>
－Omit cout from worker threads except the specified one.
－If specified thread ID is greater than the number of threads, no cout is 

displayed from worker threads. -1 to reset.
/control/cout/useBuffer <true/false>
－Send cout stream to a buffer dedicated to each worker thread.
－The buffered text will be printed at the end of the job for each thread at 

a time, so that output of each thread is grouped.
/control/cout/setCoutFile <fileName> <appendFlag>
－Send G4cout stream to a file dedicated to a thread.
－If append flag is true output is appended to the existing file, otherwise 

file output is overwritten.
－To return to a display output, use special file name "**Screen**".

Multithreading and Heterogeneous Computing - M. Asai (JLab) 20



/run/eventModulo <N> <seedOnce>

• Set the event modulo for dispatching events to worker threads 
－Each worker thread is tasked to simulate <N> events and then comes back 

to G4MTRunManager for next set.
• If it is set to zero (default value), N is roughly given by this.
－N = int( sqrt( number_of_events / number_of_threads ) )

• The value N may affect on the computing performance if N is too small 
compared to the total number of events.

• The second parameter <seedOnce> specifies how frequent each worker thread 
is seeded by the random number sequence centrally managed by the master 
G4MTRunManager.
－If <seedOnce> is set to 0 (default), seeds that are centrally managed by 

G4MTRunManager are set for every event of every worker thread. This 
option guarantees event reproducibility regardless of number of threads.
－If <seedOnce> is set to 1, seeds are set only once for the first event of 

each run of each worker thread. Event reproducibility is guaranteed only if 
the same number of worker threads are used. On the other hand, this 
option offers better computing performance for applications with relatively 
small primary particle energy and large number of events.
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Number of worker threads 

• You can specify the number of worker threads.
－They do not include master thread or visualization thread.

• Shell environment variable G4FORCENUMBEROFTHREADS will overwrite the following 
alternative settings. G4FORCENUMBEROFTHREADS can be an integer or a keyword 
"max". If "max" is specified, Geant4 uses all threads of the machine including all hyper 
threads.

• UI command /run/numberOfThreads, /run/useMaximumLogicalCores 
－This UI command has to be issued at PreInit> state.

• G4RunManager::SetNumberOfThreads(G4int)
－This method must be invoked prior to G4RunManager::Initialize().

• UI command /run/pinAffinity
－Locks worker threads to specific logical cores.
－You may gain some performance, but at your own risk!
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Sub-event parallelism in Geant4

• Split an event into sub-events and task them separately
－Sub-event : 

• Group of tracks of selected kinds or getting into a particular detector 
component 

－Suitable for heterogeneous hybrid hardware
• Sub-event parallelism will be introduced without forcing user’s code to migrate.
－Sequential, threading and tasking modes will work fine as they do now.

• Goal is to utilize heterogeneous hardware architectures.
－Recent studies showed that each GPU process should have strictly limited 

scope to achieve the desired performance.
• Limited physics coverage, particular particle types, specific geometry / 

material
• E.g. optical photon transport, EM shower in calorimeter

• While the master thread manages the entire event, it tasks sub-events to 
worker threads of different architectures that are suitable for their unique 
capabilities.
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Task-based sub-event parallel mode (Phase I)
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Task-based sub-event parallel mode (Phase II)
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Sub-event parallel mode
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Sub-event parallel mode
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Heterogeneous computing

• Heterogeneous computing is computing which uses not only CPUs but with other 
hardware architectures such as Coprocessor, GPU (Graphics Processing Unit), TPU 
(Tensor Processing Unit), NPU (Neural Processing Unit), FPGA (Field Programable Gate 
Array), ASIC (Application-Specific IC), etc.

• Goal is to optimize power, performance and cost simultaneously.
• Taking advantage of increasing heterogeneity in computing resources.

－ For example, in exa-scale computers at DOE facilities with GPUs
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GPU codes

• Recent studies showed that each GPU process should have strictly limited scope to 
achieve the desired performance.
－Limited physics coverage, particular particle types, specific geometry / material
－E.g. optical photon transport, EM shower in calorimeter

• Opticks : open-source project for optical photon transport by integrating Nvidia OptiX ray-
tracing package
－Developed by Simon Blyth for Daya Bay and JUNO experiments

• https://bitbucket.org/simoncblyth/opticks
－examples/advanced/CaTS demonstrates the use of Opticks in Geant4

• CPU transports all particles except optical photon
• AdePT, Celeritas : R&D projects for e-/e+/g EM shower in calorimeter

－AdePT (CERN) : G4HepEM 
－Celeritas (ORNL, FNAL, etc.) : Standard EM
－Both projects showed the limitation is not in physics but in geometry navigation.

• Severe thread divergence due to individual algorithms for each solid shapes. 
• Requires boundary-based geometry description.
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Is GPU the silver bullet?

• For the next HL-LHC (and likely for EIC) simulation throughput needs to increase by 
O(10^2).

• CMS recently measured x2.2 – x2.5 speedup depending on event types if they killed all 
EM particles instantly at their creations.
－This means, even if the EM processes on GPU are infinitely fast, you won’t gain 

more than x2.2 – x2.5.
• To make the simulation orders of magnitude faster, fast simulation, a.k.a. shower 

parameterization, is mandatory.
－We still need full simulation to validate / optimize fast simulation. 
－AI/ML on GPU would help a lot.

• Optimizing fast simulation parameters
• Hit pattern generation
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