
Version 11.2-p01

Multithreading
and
Heterogeneous
Computing

Makoto Asai (Jefferson Lab)
Geant4 Tutorial Course

• Multithreading in Geant4

• Shell variables and UI commands for
multithreading

• Sub-event parallelism

• Heterogeneous computing

Contents

2

• Multithreading in Geant4

• Shell variables and UI commands for
multithreading

• Sub-event parallelism

• Heterogeneous computing

Contents

3

Many-core saga

• CPU frequency had come to
plateau in 2005. Number of
transistors you can buy per $
is still growing.
－Many core

• Size of memory you can buy
per $ is not increasing as fast
as number of transistors.
－Memory size per core is

shrinking.
• Naïve parallel processing of

many jobs won’t work.
－Requires multithreading

application with shared
memory.

Multithreading and Heterogeneous Computing - M. Asai (JLab) 4

CPU Clock Frequecy 1and usage: The Future of Computing Performance: Game Over or Next Level?
DRAM cost: Data from 1971-2000: VLSI Research Inc. Data from 2001-2002: ITRS, 2002 Update, Table 7a, Cost-Near-Term Years, p. 172. Data from 2003-2018: ITRS, 2004 Update, Tables 7a and 7b, Cost-Near-Term Years, pp. 20-21.
CPU cost: Data from 1976-1999: E. R. Berndt, E. R. Dulberger, and N. J. Rappaport, "Price and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History," July 17, 2000, ;Data from 2001-2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance and Package Chips: Frequency On-Chip Wiring Levels -- Near-Term
Years, p. 167. ;
Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore, "Our Revolution,”

Detector geometry &
cross-section tables MEMORY SPACE

Transient per event data
(tracks, hits, etc.)

Active cores Unused cores

AVAILABLE CORES

MEMORY SPACE

Active cores

AVAILABLE CORES

W
ith

ou
t M

T

W
ith

 M
T

Multithreading and Heterogeneous Computing -
M. Asai (JLab) 5

Memory consumption on Intel Xeon Phi

Multithreading and Heterogeneous Computing - M.
Asai (JLab) 6

Intel Xeon Phi™ 3120A

Scalability on Intel Xeon Phi

Multithreading and Heterogeneous Computing - M.
Asai (JLab) 7

Physical
cores only

First hyper-
threading

Second hyper-
threading

Third hyper-
threading

Intel Xeon Phi™ 3120A

Geant4 evolutions in parallelization

1. Sequential mode : original since Geant4 v1.0
－Single core (thread) does everything

2. Multithreaded event-level parallelism mode : since Geant4 v10.0 (Dec.2013)
－Taking the advantage of independence of events, many cores (threads)

process events in parallel (event-level parallelism)
－Geometry / x-section tables are shared over threads

3. Task-based event-level parallelism mode : since Geant4 v11.0 (Dec.2021)
－Decoupling task (event loop) from thread
－More flexible load-balancing

4. Task-based sub-event parallel mode : planned (Dec.2024~)
－Split an event into sub-events and task them separately
－Sub-event :

• Group of tracks of selected kinds or getting into a particular detector
component

－Suitable for heterogeneous hybrid hardware

8Multithreading and Heterogeneous Computing - M. Asai (JLab)

Geant4 as a detector simulation engine

Multithreading and Heterogeneous Computing - M. Asai (JLab) 9

Process
- physics
- field integration
- volume boundary

Initialization
- geometry
- x-section

Run

Event

Track

Step

Detector

Stack

MC Event Gen
(Primary event)

Simulation output
- detector hits
- Monte Carlo truth
- histograms

Sequential mode

Multithreading and Heterogeneous Computing - M. Asai (JLab) 10

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Sequential mode

Multithreading and Heterogeneous Computing - M. Asai (JLab) 11

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

UserRunAction

UserEventAction

UserTrackingAction

UserSteppingAction

UserStackingAction

UserPrimaryGeneratorAction

Geant4 as a detector simulation engine

Multithreading and Heterogeneous Computing - M. Asai (JLab) 12

Process
- physics
- field integration
- volume boundary

Initialization
- geometry
- x-section

Run

Event

Track

Step

Detector

Stack

MC Event Gen
(Primary event)

Simulation output
- detector hits
- Monte Carlo truth
- histograms

Worker Thread / Task

Master Thread

Multi-threaded mode

Multithreading and Heterogeneous Computing - M. Asai (JLab) 13

main()

G4MTRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0 Worker thread #1 Worker thread #2

Master thread

Multithreading and Heterogeneous Computing - M.
Asai (JLab)

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTrackingA
ction

UserStepping
Action

UserPrimary
GeneratorAction

UserStackingAction

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTrackingA
ction

UserStepping
Action

UserStackingAction

main()

G4MTRunManager UserRunAction

Worker thread #1 Worker thread #2

Master thread

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTrackingA
ction

UserStepping
Action

UserStackingAction

Worker thread #0

Multi-threaded mode

UserPrimary
GeneratorAction

UserPrimary
GeneratorAction

14

Shared? Thread-local?

• In the multi-threaded mode, generally saying, data that are stable during the event loop
are shared among threads while data that are transient during the event loop are thread-
local.

• In general, geometry and physics tables are shared, while event, track, step, trajectory,
hits, etc., as well as several Geant4 manager classes such as EventManager,
TrackingManager, SteppingManager, TransportationManager, FieldManager, Navigator,
SensitiveDetectorManager, etc. are thread-local.
－Classes that have cache should be thread-local.

• Among the user classes, user initialization classes (G4VUserDetectorConstruction,
G4VUserPhysicsList and newly introduced G4VUserActionInitialization) are shared, while
all user action classes and sensitive detector classes are thread-local.
－ It is not straightforward (and thus not recommended) to access from a shared class

object to a thread-local object, e.g. from detector construction to stepping action.
－Please note that most of thread-local objects are instantiated and initialized at the

first BeamOn.
• To avoid potential errors, it is advised to always keep in mind which class is shared and

which class is thread-local.

Multithreading and Heterogeneous Computing - M. Asai (JLab) 15

Task-based parallel mode

• Since Geant4 version 11.0.
• Decoupling task (event loop) from thread.
• Geant4 supports tasking model with two different backend threading libraries.
－PTL (Parallel Tasking Library) : light-weight C++11/14 tasking system
－TBB (Intel Thread Building Blocks)

• Typically, number of tasks is much larger than the number of available threads.
－For flexible load-balancing

• User code that works with the original multithreading mode does not need any
migration.

Multithreading and Heterogeneous Computing - M. Asai (JLab) 16

Task-based parallel mode

Multithreading and Heterogeneous Computing - M.
Asai (JLab) 17

main()

G4TaskingRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0

Master thread

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread
Worker thread

Worker thread

Task

G4RunManagerFactory

• Since version 11.0, Geant4 introduced task-based event parallelism.
• There are four different running modes available
－Sequential mode
－Multithreaded mode by Posix thread

• was default in version 10 series
－Task-based multithread mode by PTL (Parallel Tasking Library)

• default
－Task-based multithread mode by Intel TBB (Threading Building Blocks)

• RunManager can be instantiated by G4RunManagerFactory with
preferred threading option.

auto* runManager =
 G4RunManagerFactory::CreateRunManager();

• Type of RunManager can be specified by the shell variable
$G4RUN_MANAGER_TYPE
－Serial, MT, Threading, TBB

• You may still use the explicit constructors such as G4MTRunManager.

Multithreading and Heterogeneous Computing - M. Asai (JLab) 18

• Multithreading in Geant4

• Shell variables and UI commands for
multithreading

• Sub-event parallelism

• Heterogeneous computing

Contents

19

G4cout in multithreaded mode

• By default, every G4cout string is displayed on the screen in the order
as it is generated.
－A line made by a worker thread is preceded by the worker identifier.

• It is not very readable if lines of several worker threads interleave.
/control/cout/ignoreThreadsExcept <threadID>
－Omit cout from worker threads except the specified one.
－If specified thread ID is greater than the number of threads, no cout is

displayed from worker threads. -1 to reset.
/control/cout/useBuffer <true/false>
－Send cout stream to a buffer dedicated to each worker thread.
－The buffered text will be printed at the end of the job for each thread at

a time, so that output of each thread is grouped.
/control/cout/setCoutFile <fileName> <appendFlag>
－Send G4cout stream to a file dedicated to a thread.
－If append flag is true output is appended to the existing file, otherwise

file output is overwritten.
－To return to a display output, use special file name "**Screen**".

Multithreading and Heterogeneous Computing - M. Asai (JLab) 20

/run/eventModulo <N> <seedOnce>

• Set the event modulo for dispatching events to worker threads
－Each worker thread is tasked to simulate <N> events and then comes back

to G4MTRunManager for next set.
• If it is set to zero (default value), N is roughly given by this.
－N = int(sqrt(number_of_events / number_of_threads))

• The value N may affect on the computing performance if N is too small
compared to the total number of events.

• The second parameter <seedOnce> specifies how frequent each worker thread
is seeded by the random number sequence centrally managed by the master
G4MTRunManager.
－If <seedOnce> is set to 0 (default), seeds that are centrally managed by

G4MTRunManager are set for every event of every worker thread. This
option guarantees event reproducibility regardless of number of threads.
－If <seedOnce> is set to 1, seeds are set only once for the first event of

each run of each worker thread. Event reproducibility is guaranteed only if
the same number of worker threads are used. On the other hand, this
option offers better computing performance for applications with relatively
small primary particle energy and large number of events.

Multithreading and Heterogeneous Computing - M. Asai (JLab) 21

Number of worker threads

• You can specify the number of worker threads.
－They do not include master thread or visualization thread.

• Shell environment variable G4FORCENUMBEROFTHREADS will overwrite the following
alternative settings. G4FORCENUMBEROFTHREADS can be an integer or a keyword
"max". If "max" is specified, Geant4 uses all threads of the machine including all hyper
threads.

• UI command /run/numberOfThreads, /run/useMaximumLogicalCores
－This UI command has to be issued at PreInit> state.

• G4RunManager::SetNumberOfThreads(G4int)
－This method must be invoked prior to G4RunManager::Initialize().

• UI command /run/pinAffinity
－Locks worker threads to specific logical cores.
－You may gain some performance, but at your own risk!

Multithreading and Heterogeneous Computing - M. Asai (JLab) 22

• Multithreading in Geant4

• Shell variables and UI commands for
multithreading

• Sub-event parallelism

• Heterogeneous computing

Contents

23

Sub-event parallelism in Geant4

• Split an event into sub-events and task them separately
－Sub-event :

• Group of tracks of selected kinds or getting into a particular detector
component

－Suitable for heterogeneous hybrid hardware
• Sub-event parallelism will be introduced without forcing user’s code to migrate.
－Sequential, threading and tasking modes will work fine as they do now.

• Goal is to utilize heterogeneous hardware architectures.
－Recent studies showed that each GPU process should have strictly limited

scope to achieve the desired performance.
• Limited physics coverage, particular particle types, specific geometry /

material
• E.g. optical photon transport, EM shower in calorimeter

• While the master thread manages the entire event, it tasks sub-events to
worker threads of different architectures that are suitable for their unique
capabilities.

Multithreading and Heterogeneous Computing - M. Asai (JLab) 24

Task-based sub-event parallel mode (Phase I)

25

Process
- physics
- field
- volume

Initialization
- geometry
- x-section

Run

Event

Track

Step

Detector

Stack

MC Event Gen
(Primary event)

Simulation output
- detector hits
- Monte Carlo truth
- histograms

Stack

Sorter /
Merger

Sub-event
Task

In Phase I, all tasks have the same
physics processes and see the same
detector geometry.

Stack
Stack

Multithreading and Heterogeneous Computing - M. Asai (JLab)

Multithreading and Heterogeneous Computing - M. Asai (JLab)

Task-based sub-event parallel mode (Phase II)

26

Initialization
- geometry
- x-section

Run

Event

MC Event Gen
(Primary event)

Simulation output
- detector hits
- Monte Carlo truth
- histograms

Stack

Sorter /
Merger

Dedicated
Processes
- physics
- field
- volume

Track

Step

Detector

Stack

Sub-event
Task

In Phase II, each task has only the
necessary physics processes and sees
the limited detector geometry that
are necessary for that particular
task.
• Essential for heterogeneous

simulation

Stack
Stack

Sub-event parallel mode

Multithreading and Heterogeneous Computing - M. Asai (JLab) 27

main()

G4SubEvtRunManager G4Run

Master thread

Worker thread
Worker thread

Worker thread

G4EventManager
G4Event

A Tracking Manager

A Stepping Manager

A Track

A Step

G4SubEvent

Sub-event parallel mode

Multithreading and Heterogeneous Computing - M. Asai (JLab) 28

main()

G4SubEvtRunManager G4Run

Master thread

Worker thread
Worker thread

Worker thread

G4EventManager
G4Event

A Tracking Manager

A Stepping Manager

A Track

A Step

A Tracking Manager

A Stepping Manager

G4Event

A Track

A Step

G4EventManager

Task

G4SEPWorkerRunManager

A Tracking Manager

A Stepping Manager

G4Event

A Track

A Step

G4EventManager

Task

G4SEPWorkerRunManager

G4EventManager

A Tracking Manager

A Stepping Manager

G4Event

A Track

A Step

G4SubEvtWorkerRunManager

Task

G4SubEvent

• Multithreading in Geant4

• Shell variables and UI commands for
multithreading

• Sub-event parallelism

• Heterogeneous computing

Contents

29

Heterogeneous computing

• Heterogeneous computing is computing which uses not only CPUs but with other
hardware architectures such as Coprocessor, GPU (Graphics Processing Unit), TPU
(Tensor Processing Unit), NPU (Neural Processing Unit), FPGA (Field Programable Gate
Array), ASIC (Application-Specific IC), etc.

• Goal is to optimize power, performance and cost simultaneously.
• Taking advantage of increasing heterogeneity in computing resources.

－ For example, in exa-scale computers at DOE facilities with GPUs

Multithreading and Heterogeneous Computing - M. Asai (JLab) 30

GPU codes

• Recent studies showed that each GPU process should have strictly limited scope to
achieve the desired performance.
－Limited physics coverage, particular particle types, specific geometry / material
－E.g. optical photon transport, EM shower in calorimeter

• Opticks : open-source project for optical photon transport by integrating Nvidia OptiX ray-
tracing package
－Developed by Simon Blyth for Daya Bay and JUNO experiments

• https://bitbucket.org/simoncblyth/opticks
－examples/advanced/CaTS demonstrates the use of Opticks in Geant4

• CPU transports all particles except optical photon
• AdePT, Celeritas : R&D projects for e-/e+/g EM shower in calorimeter

－AdePT (CERN) : G4HepEM
－Celeritas (ORNL, FNAL, etc.) : Standard EM
－Both projects showed the limitation is not in physics but in geometry navigation.

• Severe thread divergence due to individual algorithms for each solid shapes.
• Requires boundary-based geometry description.

Multithreading and Heterogeneous Computing - M. Asai (JLab) 31

https://bitbucket.org/simoncblyth/opticks

Is GPU the silver bullet?

• For the next HL-LHC (and likely for EIC) simulation throughput needs to increase by
O(10^2).

• CMS recently measured x2.2 – x2.5 speedup depending on event types if they killed all
EM particles instantly at their creations.
－This means, even if the EM processes on GPU are infinitely fast, you won’t gain

more than x2.2 – x2.5.
• To make the simulation orders of magnitude faster, fast simulation, a.k.a. shower

parameterization, is mandatory.
－We still need full simulation to validate / optimize fast simulation.
－AI/ML on GPU would help a lot.

• Optimizing fast simulation parameters
• Hit pattern generation

Multithreading and Heterogeneous Computing - M. Asai (JLab) 32

