Short Guide to Choosing Your Physics Lists

Mihaly Novak (CERN, EP-SFT)

Geant4 Tutorial at Jefferson Lab, 28 March 2024

Geant4.11.2.p01

OUTLINE

Recapitulation

• Physics list. Reference physics lists. Physics list naming conventions.

Validation

RECAPITULATION

Recapitulation

• Physics list. Reference physics lists. Physics list naming conventions.

Validation

Physics Lists:

Physics lists

Physics List is an object that is responsible to:

- o specify all the particles that will be used in the simulation application
- together with the list of physics processes assigned to each individual particles
- the user can give the list of particles and assign different set of processes to them
- o this will determine the "physics environment" of the simulation
- the user must have a good understanding of the physics required to describe properly the given problem
- omission of relevant particles and/or physics interactions could lead to poor modelling results

Reference Physics Lists:

"Production physics lists":

- these physics lists are used by large user groups like ATLAS, CMS, etc.
- o because of their importance, they are well-maintained and tested physics lists
- o they are changed, updated less frequently: very stable physics lists
- o they are extensively validated by the developers and the user communities
- FTFP_BERT, QGSP_BERT, QGSP_FTFP_BERT_EMV, FTFP_BERT_HP, QGSP_BIC_EMY, QGSP_BIC_HP, QBBC, Shielding

Caveats:

- these lists are provided as a "best guess" of the physics needed in some given use cases
- when a user decide to use them, the user is responsible for "validating" the physics for that given application
- it means adding (or removing) the appropriate physics, using the proper settings
- they are intended to give a starting point or template for the user physics list

Reference Physics Lists: naming convention

Some Hadronic options:

- o "QGS" Quark Gluon String model (>~15 GeV)
- o "FTF" FRITIOF String model (> ~5 GeV)
- o "BIC" Binary Cascade model (<~10 GeV)
- o "BERT" Bertini Cascade model (<~10 GeV)
- "P" G4Precompound model used for de-excitation
- o "HP" High Precision neutron model (< ~20 MeV)

Some EM options:

- No suffix: standard EM i.e. the default G4EmStandardPhysics constructor
- o "EMV" G4EmStandardPhysics_option1 CTR: HEP, fast but less precise
- o "EMY" G4EmStandardPhysics_option3 CTR: medical, space sci., precise
- "EMZ" G4EmStandardPhysics_option4 CTR: most precise EM physics
- Name decoding: String(s)_Cascade_Neutron_EM
- The complete list of pre-packaged physics list with detailed description can be found in the documentation ("Guide for Physics Lists"):
- http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/ index.html

Reference Physics Lists: naming convention (example) G4

■ FTFP_BERT:

- Recommended by Geant4 developers for HEP applications
- Includes the standard EM physics i.e. G4EmStandardPhysics CTR
- o "FTF" FRITIOF string model (> 4 GeV)
- o "BERT" Bertini Cascade model (< 5 GeV)
- "P" G4Precompound model used for de-excitation

■ QGSP_BIC_HP(_EMZ):

- Recommended for medical applications (experimental QGSP_BIC_AllHP)
- o "QGS" Quark Gluon String model (> 12 GeV)
- o "FTF" FRITIOF String model (9.5 25 GeV)
- "P" G4Precompound model used for de-excitation
- o "BIC" Binary Light Ion Cascade model (200 MeV 9.9 GeV)
- o "HP" High Precision neutron model (< ~20 MeV)
- "EMZ" G4EmStandardPhysics_option4 CTR (or EMY that's a bit less precise)

Example: using reference physics lists with EM option

- a QGSP_BIC_HP reference physics list, including all the above mentioned CTRs is available (but with the standard EM physics)
- the G4PhysListFactory knows everything about the available reference lists
- o moreover, it makes possible to replace their EM option with a new one

```
// IM YOUR MAIN APPLICATION
212
213
     11
214
       // create your run manager
     #ifdef G4MULTITHREADED
215
216
        G4MTRunManager + runManager = new G4MTRunManager;
       // number of threads can be defined via macro command
217
218
        runManager->SetNumberOfThreads(4);
     #else
219
        G4RunManager* runManager = new G4RunManager;
220
221
      #endif
222
       11
223
       // create a physics list factory object that knows
       // everything about the available reference physics lists
224
225
       // and can replace their default EM option
226
        G4PhysListFactory physListFactory;
227
       // obtain the QGSP_BIC_HP_EMZ reference physics lists
228
       // which is the QGSP_BIC_HP refrence list with opt4 EM
229
        const G4String plName = "QGSP_BIC_HP_EMZ";
        G4VModularPhysicsList* pList = physListFactory.GetReferencePhysList(plName);
230
        // (check that pList is not nullptr, that I skipp now)
231
        // register your physics list in the run manager
232
233
        runManager->SetUserInitialization(pList);
        // register further mandatory objects i.e. Detector and Primary-generator
234
235
        . . .
```

Choosing your physics list:

Recommendation:

- Ideal situation: the user(s) have a good understanding of the physics relevant for a given application
 - + the user can either build its own physics list or decide to use a pre-defined one
 - + the chosen physics list needs to be validated for the given application
 - + can be done either by the user or by someone else in case of some reference lists
 - during the validation procedure, some parts of the physics list might be changed add physics, remove physics, change settings, etc.
- The given application belongs to a well defined application area (e.g. medical applications)
 - the user can choose the reference physics list recommended for the given application area as a staring point
 - + the chosen physics list needs to be validated for the given application (same as above)
- Something that always works (but time consuming):
 - + the user can take the most accurate physics settings (e.g. opt4 for EM)
 - + run some simulation with lower statistics to obtain the most accurate result
 - then the user can take a less accurate but fast physics setting (e.g. opt0 for EM) as a starting point and obtain some simulation results
 - then granularly extend the initial physics list by using the accurate results as reference

Outline

VALIDATION

Recapitulation

• Reference physics lists. Physics list naming conventions.

Validation

Validation

11

Using the Geant4 validation results:

- you must choose a physics list based on how well its component processes and models perform in your specific case:
 - physics accuracy versus CPU performance
- Geant4 provides validation (i.e. comparison to data) for most of its physics codes
 - validation is a continuing task, performed at least as often as each release
 - more validation tests added as time goes on
 - large number of papers available (just look for them)
- To access these comparisons, go to Geant4 or directly to the validation sites:
 - Geant4 website: <u>https://geant4.web.cern.ch</u>
 - The Geant4 GRID-based testing results portal

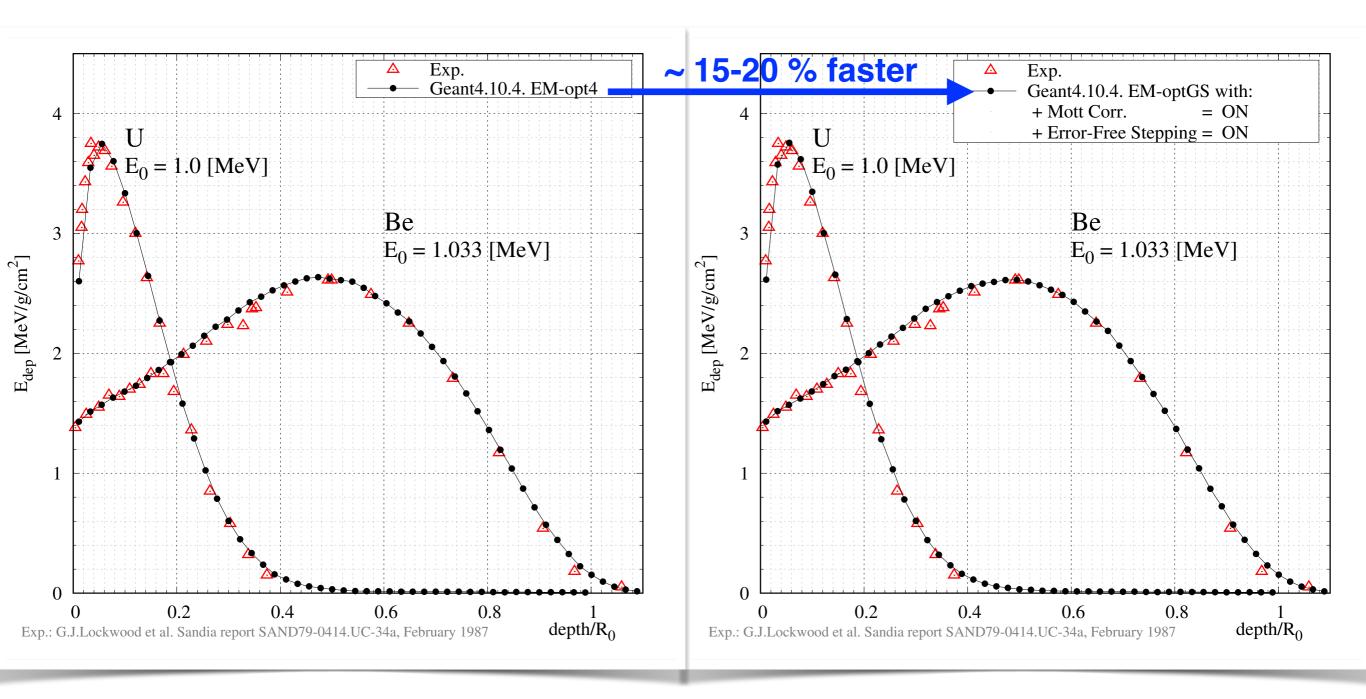
Validation:

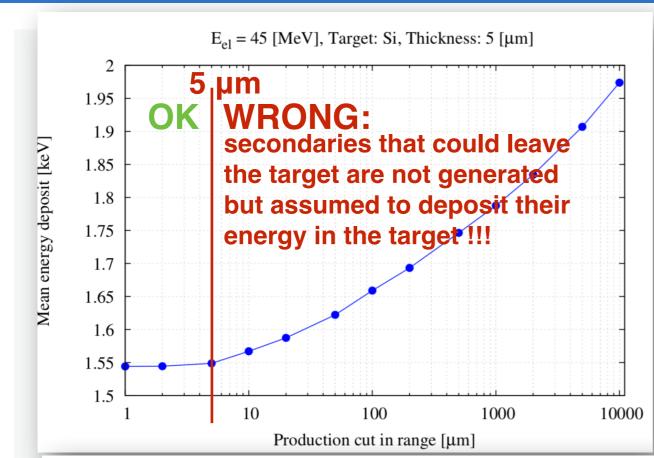
EXAMPLE

Recapitulation

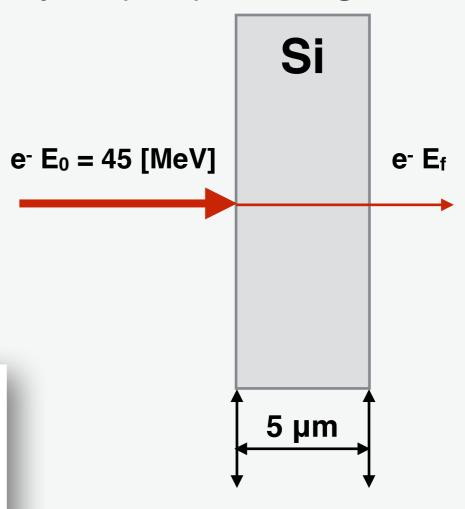
• Reference physics lists. Physics list naming conventions.

Validation


Example:


- Suppose you want to simulate (EM) depth dose profile:
- simulation of energy deposit by energetic electrons as a function of the penetration depth (both lighter and heavier materials)
- we will use the Geant4 validation results from <u>Geant4 GRID-based testing</u> results portal, especially test37 to choose our initial physics list to start with
- then we will adjust our initial reference physics list to achieve maximum physics performance while improving the computation efficiency

Example



Secondary production threshold: never forget!

	cut $[\mu m]$	mean E_{dep}	rms E_{dep}	prod. thres. [keV]		mean num. sec.	
				γ	e ⁻	γ	e ⁻
	1	1.54423	0.000573911	0.99	0.99	0.0006811	0.1018230
	2	1.54443	0.000583879	0.99	2.9547	0.0006843	0.0316897
	5	1.54882	0.000605834	0.99	13.1884	0.0006857	0.0068261
	10	1.56717	0.000665733	0.99	31.9516	0.0006730	0.0028232
	20	1.58734	0.000743473	1.08038	47.8191	0.0006651	0.0018811
	50	1.62223	0.000912408	1.67216	80.7687	0.0006557	0.0011304
	100	1.65893	0.001108240	2.32425	121.694	0.0006518	0.0007536
	200	1.69338	0.001342180	3.2198	187.091	0.0006465	0.000477
	500	1.74642	0.001774670	5.00023	337.972	0.0006184	0.0002617
	1000	1.78751	0.002219870	6.95018	548.291	0.0006054	0.0001622
	2000	1.83440	0.002861020	9.66055	926.09	0.0005786	9.3e-05
	5000	1.90700	0.004243030	14.9521	2074.3	0.0005427	4.07 e- 05
	10000	1.97378	0.006036600	20.6438	4007.59	0.000521	2.22e-05

Compute the mean of the energy deposit (E_f-E₀) in the target

