
Version 11.2-p01

Kernel II
Makoto Asai (Jefferson Lab)
Geant4 Tutorial Course

• User limits
• Attaching user information to G4 classes
• Stacking mechanism

Contents

Kernel II - M. Asai (JLab) 2

• User limits
• Attaching user information to G4 classes
• Stacking mechanism

Contents

Kernel II - M. Asai (JLab) 3

G4UserLimits

• User limits are artificial limits affecting to the tracking.
G4UserLimits(G4double ustepMax = DBL_MAX,
 G4double utrakMax = DBL_MAX,
 G4double utimeMax = DBL_MAX,
 G4double uekinMin = 0.,
 G4double urangMin = 0.);
－ustepMax; // max allowed step size in this volume
－utrakMax; // max total track length
－utimeMax; // max global time
－uekinMin; // min kinetic energy remaining (only for charged particles)
－urangMin; // min remaining range (only for charged particles)
Blue : affecting to step
Red : affecting to track

• You can set user limits to logical volume and/or to a region.
－User limits assigned to logical volume do not propagate to daughter volumes.
－User limits assigned to region propagate to daughter volumes unless daughters

belong to another region.
－ If both logical volume and associated region have user limits, those of logical

volume win.

Kernel II - M. Asai (JLab) 4

Processes co-working with G4UserLimits
• In addition to instantiating G4UserLimits and setting it to logical volume or region, you

have to assign the following process(es) to particle types you want to affect.

• Limit to step

ustepMax : max allowed Step size in this volume

－G4StepLimiter process must be defined to affected particle types.

－This process limits a step, but it does not kill a track.

• Limits to track

utrakMax : max total track length

utimeMax : max global time

uekinMin : min kinetic energy (only for charged particles)

urangMin : min remaining range (only for charged particles)

－G4UserSpecialCuts process must be defined to affected particle types.

－This process limits a step and kills the track when the track comes to one of these
limits. Step limitation occurs only for the final step.

Kernel II - M. Asai (JLab) 5

Production thresholds (a.k.a. cuts)

• Geant4 does not have any tracking cut. It always tracks a particle down to zero
kinetic energy.
－Unless the particle interacts or goes away.
－A particle may decay or be captured even after it stops.

• Of course each physics model has its limited applicability.
－For example Standard EM has lower limit of 990 eV.
－ It means we can calculate the range of a particle at Ek = 990 eV.
－So, when a particle comes down to Ek = 990 eV, instead of killing it at that point,

Geant4 makes one more step to push the particle to its final stopping point.
• Geant4 does have production thresholds applied to secondary particle production.

－To address the infrared divergence of some physics processes
• e.g. ultra-soft forward gamma production in Bremsstrahlung

－To also address the limited computing resources
• e.g. too many soft delta-rays

• Geant4 requires production thresholds to be specified in length.
－Secondaries that won’t travel more than the threshold won’t be generated but

their kinetic energies are deposited along the trajectory of their parent particle.

Kernel II - M. Asai (JLab) 6

Production thresholds (a.k.a. cuts)

• High production threshold

－Few secondary produced by
ionization or Bremsstrahlung

－Most energy are deposited along
the parent track.

• Continuous energy loss
－You will see higher total energy

deposition along a step of the
parent track.

Kernel II - M. Asai (JLab) 7

• Low production threshold

－Lots of secondaries produced by
ionization or Bremsstrahlung

－Energy deposition is shared by
local deposition along the parent
and secondaries.

－You will see lower total energy
deposition along a step of the
parent track.

• If energy deposition is scored in a large bulk
volume, you won’t see difference in high and
low thresholds.
－Except for the difference in computing time

• If energy deposition is scored in granular
scoring cells, you will see large difference.

• We recommend the production thresholds being
comparable to volume dimensions.
－ Default length : 0.7 mm

• User limits
• Attaching user information to G4 classes
• Stacking mechanism

Contents

Kernel II - M. Asai (JLab) 8

Attaching user information

• Class extension

－You can create your own class derived from provided base class

－G4Run, G4VHit, G4VDigit, G4VTrajectory, G4VTrajectoryPoint

• Aggregation

－You can attach a user information class object
• G4Event - G4VUserEventInformation

• G4Track - G4VUserTrackInformation

• G4PrimaryVertex - G4VUserPrimaryVertexInformation

• G4PrimaryParticle - G4VUserPrimaryParticleInformation

• G4Region - G4VUserRegionInformation

－User information class object is deleted when associated Geant4 class
object is deleted.

Kernel II - M. Asai (JLab) 9

Trajectory and trajectory point

• Trajectory and trajectory point class objects persist until the end of an event.

• G4VTrajectory is the abstract base class to represent a trajectory, and
G4VTrajectoryPoint is the abstract base class to represent a point which makes up
the trajectory.
－ In general, trajectory class is expected to have a vector of trajectory points.

• Geant4 provides G4Trajectoy and G4TrajectoryPoint concrete classes as defaults.
These classes keep only the most commonly-used quantities.
－G4RichTrajectory and G4SmoothTrajectory are also available.

－ If the you want to keep some additional information, you are encouraged to
implement your own concrete trajectory and trajectory point classes deriving from
G4VTrajectory and G4VTrajectoryPoint base classes.

－Do not use G4Trajectory nor G4TrajectoryPoint concrete class as base classes
unless you are sure not to add any additional data member.

• Source of memory leak

Kernel II - M. Asai (JLab) 10

Creation of trajectories

• Naïve creation of trajectories occasionally causes a memory consumption concern,
especially for high energy EM showers.

• In UserTrackingAction, you can switch on/off the creation of a trajectory for the particular
track.

void MyTrackingAction
 ::PreUserTrackingAction(const G4Track* aTrack)
{
 if(...)
 { fpTrackingManager->SetStoreTrajectory(true); }
 else
 { fpTrackingManager->SetStoreTrajectory(false); }
}

• If you want to use user-defined trajectory, object should be instantiated in this method
and set to G4TrackingManager by SetTrajectory() method.

 fpTrackingManager->SetTrajectory(new MyTrajectory(…));

Kernel II - M. Asai (JLab) 11

Bookkeeping issues

• Connection from G4PrimaryParticle to G4Track

G4int G4PrimaryParticle::GetTrackID()

－Returns the track ID if this primary particle had been converted into G4Track,
otherwise -1.

• Both for primaries and pre-assigned decay products

• Connection from G4Track to G4PrimaryParticle

G4PrimaryParticle* G4DynamicParticle::GetPrimaryParticle()

－Returns the pointer of G4PrimaryParticle object if this track was defined as a
primary or a pre-assigned decay product, otherwise null.

• G4VUserPrimaryVertexInformation, G4VUserPrimaryParticleInformation and
G4VUserTrackInformation may be used for storing additional information.

－ Information in UserTrackInformation should be then copied to user-defined trajectory
class, so that such information is kept until the end of the event.

Kernel II - M. Asai (JLab) 12

Examples/extended/runAndEvent/RE01

• An example for connecting
G4PrimaryParticle, G4Track,
hits and trajectories, by
utilizing
G4VUserTrackInformation and
G4VUserRegionInformation.

• PrimaryTrackID is copied
to UserTrackInformation
of daughter tracks.

• SourceTrackID means the
ID of a track which gets
into calorimeter.

• SourceTrackID is updated for
secondaries born in tracker,
while just copied in calorimeter.

Kernel II - M. Asai (JLab) 13

PrimaryTrackID = 1
SourceTrackID = 4

PrimaryTrackID = 1
SourceTrackID = 1

RE01TrackInformation

PrimaryTrackID = 2
SourceTrackID = 2

PrimaryTrackID = 1
SourceTrackID = 1

PrimaryTrackID = 1
SourceTrackID = 3

PrimaryTrackID = 1
SourceTrackID = 1PrimaryTrackID = 1

SourceTrackID = 1

PrimaryTrackID = 1
SourceTrackID = 4PrimaryTrackID = 1

SourceTrackID = 4PrimaryTrackID = 1
SourceTrackID = 4

Examples/extended/runAndEvent/RE01

Kernel II - M. Asai (JLab) 14

Trajectory of track6782

Tracker hits of track6782

Calorimeter hits of track6782

Energy deposition includes not only
muon itself but also all secondary EM

showers started inside the calorimeter.

RE01RegionInformation

• RE01 example has three regions, i.e. default world region, tracker region and calorimeter
region.
－Each region has its unique object of RE01RegionInformation class.

class RE01RegionInformation : public G4VUserRegionInformation
{
 …
 public:
 G4bool IsWorld() const;
 G4bool IsTracker() const;
 G4bool IsCalorimeter() const;
 …
};

• Through step->preStepPoint->physicalVolume->logicalVolume->region->
regionInformation, you can easily identify in which region the current step belongs.
－Don’t use volume name to identify.

Kernel II - M. Asai (JLab) 15

Use of RE01RegionInformation

void RE01SteppingAction::UserSteppingAction(const G4Step * theStep)
{ // Suspend a track if it is entering into the calorimeter
 // get region information
 G4StepPoint* thePrePoint = theStep->GetPreStepPoint();
 G4LogicalVolume* thePreLV = thePrePoint->GetPhysicalVolume()->GetLogicalVolume();
 RE01RegionInformation* thePreRInfo
 = (RE01RegionInformation*)(thePreLV->GetRegion()->GetUserInformation());
 G4StepPoint* thePostPoint = theStep->GetPostStepPoint();
 G4LogicalVolume* thePostLV = thePostPoint->GetPhysicalVolume()->GetLogicalVolume();
 RE01RegionInformation* thePostRInfo
 = (RE01RegionInformation*)(thePostLV->GetRegion()->GetUserInformation());

 // check if it is entering to the calorimeter volume
 if(!(thePreRInfo->IsCalorimeter()) && (thePostRInfo->IsCalorimeter()))
 { theTrack->SetTrackStatus(fSuspend); }
}

Kernel II - M. Asai (JLab) 16

• User limits
• Attaching user information to G4 classes
• Stacking mechanism

Contents

Kernel II - M. Asai (JLab) 17

Track stacks in Geant4

• By default, Geant4 has three track stacks.
－"Urgent", "Waiting" and "PostponeToNextEvent"
－Each stack is a simple "last-in-first-out" stack.
－User can arbitrary increase the number of stacks.

• ClassifyNewTrack() method of UserStackingAction decides which stack
each newly storing track to be stacked (or to be killed).
－By default, all tracks go to Urgent stack.

• A Track is popped up only from Urgent stack.

• Once Urgent stack becomes empty, all tracks in Waiting stack are
transferred to Urgent stack.
－And NewStage() method of UsetStackingAction is invoked.

• Utilizing more than one stacks, user can control the priorities of processing
tracks without paying the overhead of "scanning the highest priority track".
－Proper selection/abortion of tracks/events with well designed stack

management provides significant efficiency increase of the entire simulation.

Kernel II - M. Asai (JLab) 18

Stacking mechanism

Kernel II - M. Asai (JLab) 19

Event Manager

Tracking
Manager

Stacking
Manager

User Stacking
Action

Urgent
Stack

Waiting
Stack

Postpone To
Next Event

Stack

Push
Pop

Push

Push

Push

Pop

Classify

secondary
and suspended

tracks

Process
One
Track

primary
tracks

RIP

Deleted

Transfer

NewStage
Urgent
Stack

Waiting
Stack

Temporary
Stack

Reclassify

Pop

End Of
Event

Postpone To
Next Event

Stack

Transfer

Prepare
New Event

G4UserStackingAction

• User has to implement three methods.
• G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)
－Invoked every time a new track is pushed to G4StackManager.
－Classification

• fUrgent - pushed into Urgent stack
• fWaiting - pushed into Waiting stack
• fPostpone - pushed into PostponeToNextEvent stack
• fKill - killed

• void NewStage()
－Invoked when Urgent stack becomes empty and all tracks in Waiting

stack are transferred to Urgent stack.
－All tracks which have been transferred from Waiting stack to Urgent

stack can be reclassified by invoking stackManager->ReClassify()
• void PrepareNewEvent()
－Invoked at the beginning of each event for resetting the classification

scheme.

Kernel II - M. Asai (JLab) 20

Tips of stacking manipulations

• Classify all secondaries as fWaiting until Reclassify() method is invoked.
－ You can simulate all primaries before any secondaries.

• Classify secondary tracks below a certain energy as fWaiting until
Reclassify() method is invoked.
－ You can roughly simulate the event before being bothered by low energy EM

showers.

• Suspend a track on its fly. Then this track and all of already generated
secondaries are pushed to the stack.
－ Given a stack is "last-in-first-out”, secondaries are popped out prior to the

original suspended track.
－ Quite effective for Cherenkov lights

• Suspend all tracks that are leaving from a region, and classify these
suspended tracks as fWaiting until Reclassify() method is invoked.
－ You can simulate all tracks in this region prior to other regions.
－ Note that some back splash tracks may come back into this region later.

Kernel II - M. Asai (JLab) 21

Set the track status

• In UserSteppingAction, user can change the status of a track.

void MySteppingAction::UserSteppingAction

 (const G4Step * theStep)

{

 G4Track* theTrack = theStep->GetTrack();

 if(…) theTrack->SetTrackStatus(fSuspend);

}

• If a track is killed in UserSteppingAction or in the
UserStackingAction, physics quantities of the track (energy,
charge, etc.) are not conserved but completely lost.

Kernel II - M. Asai (JLab) 22

First-in-first-out stack

• The development of photon entanglement process requires
first-in-first-out stack.
－To flip two tracks after letting each of them make several steps and suspended.
－Ordinary stack (last-in-first-out) doesn’t do this.

• Once you suspend a track, it is popped up from the stack prior to the other
track that had already been suspended.

• You can add one more waiting stack and send the suspended track to the second
waiting stack.
－Once the urgent stack becomes empty, tracks in the first (default) waiting stack are

sent to the urgent stack, and tracks in the second waiting stack are sent to the first
waiting stack. So, you basically have first-in-first-out stack.

auto rm = G4RunManager::GetRunManager();
rm->SetNumberOfAdditionalWaitingStacks(1);
rm->SetDefaultClassification(fSuspend, fWaiting_1);

• This same trick may be used for R-hadron, etc.
• Note: this setting is thread-local.

Kernel II - M. Asai (JLab) 23

RE05StackingAction

• RE05 has simplified collider detector
geometry and event samples of Higgs
decays into four muons.

• Stage 0
－Only primary muons are pushed into

Urgent stack and all other primaries
and secondaries are pushed into
Waiting stack.
－All of four muons are tracked

without being bothered by EM
showers caused by delta-rays.
－Once Urgent stack becomes empty

(i.e. end of stage 0), number of hits
in muon counters are examined.
－Proceed to next stage only if

sufficient number of muons passed
through muon counters. Otherwise
the event is aborted.

Kernel II - M. Asai (JLab) 24

RE05StackingAction

• Stage 1
－Only primary charged particles are

pushed into Urgent stack and all
other primaries and secondaries
are pushed into Waiting stack.
－All of primary charged particles are

tracked until they reach to the
surface of calorimeter. Tracks
reached to the calorimeter surface
are suspended and pushed back to
Waiting stack.
－All charged primaries are tracked in

the tracking region without being
bothered by the showers in
calorimeter.
－At the end of stage 1, isolation of

muon tracks is examined.

Kernel II - M. Asai (JLab) 25

RE05StackingAction

• Stage 2
－Only tracks in "region of interest"

are pushed into Urgent stack and
all other tracks are killed.

－Showers are calculated only
inside of "region of interest".

Kernel II - M. Asai (JLab) 26

Tips of stacking manipulations

• Classify all secondaries as fWaiting until Reclassify() method is invoked.
－ You can simulate all primaries before any secondaries.

• Classify tracks below a certain energy as fWaiting until Reclassify()
method is invoked.
－ You can roughly simulate the event before being bothered by low energy EM

showers.

• Suspend a track on its fly. Then this track and all of already generated
secondaries are pushed to the stack.
－ Given a stack is "last-in-first-out”, secondaries are popped out prior to the

original suspended track.
－ Quite effective for Cherenkov / scintillation lights

• Suspend all tracks that are leaving from a region, and classify these
suspended tracks as fWaiting until Reclassify() method is invoked.
－ You can simulate all tracks in this region prior to other regions.
－ Note that some back-splash tracks may come back into this region later.

Kernel II - M. Asai (JLab) 27

