Hadronic Physics II

Geant4 11.2.p01

Dennis Wright Geant4 Tutorial at Jefferson Lab 27 March 2024

- Elastic processes and models
- Low energy neutron and proton physics
- Ion-ion physics
- Capture, stopping and fission reactions

Hadron Elastic Scattering

• G4HadronElasticProcess: general elastic scattering

- valid for all energies, all projectiles
- includes p, n, π , K, hyperons, anti-nucleons, anti-hyperons, ...
- uses proton cut values (scaled by Z) for recoil nucleus generation
- Implemented by
 - elastic cross section data sets
 - elastic models

Hadron Elastic Cross Sections

- G4BGGNucleonElasticXS (BGG = Barashenkov-Glauber-Gribov)
 - protons
- G4NeutronElasticXS
 - neutrons
- G4BGGPionElasticXS
 - and Glauber-Gribov parameterization above
- G4ComponentGGNuclNuclXsc
 - kaons, hyperons, anti-hyperons and light ions
- G4ComponentAntiNuclNuclearXS
 - anti-nucleon and anti-light nucleus elastic scattering from nuclei using Glauber approach
- No elastic cross sections available for A > 4

BGG elastic scattering of pions and from nuclei using Barashenkov parameterization below 91 GeV

Hadronic Models Implementing G4HadronElasticProcess

Elastic Model Validation

6

- Below about 20 MeV incident energy, Geant4 provides several models for treating n, p, d, t, ³He and α interactions in detail
- The high precision models (ParticleHP) are data-driven and depend on a large database of cross sections, etc.
 - the G4NDL database is available for download from the Geant4 web site
 - TENDL optional database is also available
 - elastic, inelastic, capture and fission models all use this isotope-dependent data
- There are also models to handle thermal scattering from chemically bound atoms

Low Energy Hadron Physics

High Precision Particle Transport

- t, ³He, α below 20 MeV for n
 - from sub-eV to ~20 MeV for neutrons
 - 0 < E < 200 MeV for charged particles
 - depend on large database (JEFF)
 - alternative databases available: TENDL, IAEA medical
- Note: these models and database not originally designed for event-by-event energy conservation
 - averaged over events
 - distort original spectrum

• ParticleHP models provide elastic, inelastic, capture and fission for incident n, p, d,

• much of the data were taken and parameterized in spectrum mode -> energy conserved when

• environment variable added in Geant4 to force event-by-event energy conservation, but this can

Geant4 Neutron Data Library (G4NDL)

- Contains the data files for the high precision particle models
 - includes both cross sections and final states
 - current version: G4NDL4.7
 - download from Geant4 web page
- Based on JEFF-3.3 since Geant4 10.6
 - JEFF: Joint Evaluated Fission and Fusion Library
 - ENDF/B-VII used from Geant4 9.5 to 10.6
- Data and final states from JEFF converted to G4NDL format
 - using PREPRO-2017 (standard public conversion code from IAEA)
- Other evaluated neutron cross section libraries in G4NDL format available
 - https://www.oecd-nea.org/geant4

G4ParticleHPElastic

- Handles elastic scattering of n, p, d, t, ³He, α by sampling differential cross section data

 - interpolates between points in the cross section tables as a function of energy • interpolates between Legendre polynomial coefficients to get the angular distribution as a function of energy
 - scattered particle and recoil nucleus generated as final state
- Note that because look-up tables are based on binned data, there will always be a small energy non-conservation
 - true for HP inelastic, capture and fission processes as well

G4ParticleHPInelastic

- Currently supports many inelastic final states (discrete and continuum)
 - n (A,Z) -> (A, Z) n γ
 - n (A,Z) -> (A-1, Z-1) n p
 - n (A,Z) -> (A-3, Z) n n n n
 - n (A,Z) -> (A-4, Z-2) d t

- Secondary distribution probabilities
 - isotropic emission

• ...

- discrete two-body kinematics
- N-body phase space
- continuum energy-angle distributions (in lab and CM)

Secondary Neutrons from (n, ²³⁵U) integrated over all angles

ZA=92235

ZA=92235

- GIDI+ : collection of packages for reading and sampling GNDS data as needed by transport codes
 - developed by Livermore
- GNDS database
 - data for neutron and gamma reactions
 - modern format, more general and easier to understand than ENDF
 - not yet as extensive, but growing
- LEND : collection of Geant4 models that use GIDI+
 - an alternative to the HP models
 - corresponding model to each one in HP (elastic, inelastic, capture, fission)
- Invocation in physics list:
 - use model names G4LENDElastic, G4LENDInelastic, G4LENDCapture, G4LENDFission, and cross sections G4LENDElasticCrossSection, G4LENDInelasticCrossSection, G4LENDCaptureCrossSection, G4LENDFissionCrossSection
- - to get database go to <u>ftp://gdo-nuclear.ucllnl.org/pub/</u> and select G4LEND, then ENDF-B-VII.0.tar.gz
 - new version will have library downloadable from Geant4 web page

• Note: the above is the new version (ready soon); current version of GIGI-LEND in Geant4 is old and buggy but usable

Ion-ion Inelastic Scattering

- six different nucleus-nucleus collision models
 - G4BinaryLightIon
 - G4WilsonAbrasion/G4WilsonAblation
 - G4EMDissociationModel
 - G4QMD
 - G4Incl
 - FTF
- Also provided are several ion-ion cross section data sets
- Currently no ion-ion elastic scattering models provided

• Up to now we've considered only hadron-nucleus interactions, but Geant4 has

G4BinaryLightIonReaction

- This model is an extension of the G4BinaryCascade model (discussed earlier)
- The hadron-nuclear interaction part is identical, but the nucleus-nucleus part involves:
 - preparation of two 3D nuclei with Woods-Saxon or harmonic oscillator potentials
 - lighter nucleus always assumed to be the projectile
 - nucleons in the projectile are entered with their positions and momenta into the initial collision state
 - nucleons are interacted one-by-one with the target nucleus, using the original Binary cascade model

G4WilsonAbrasion and G4WilsonAblation

- A simplified macroscopic model of nucleus-nucleus collisions
 - based largely on geometric arguments
 - faster than Binary cascade or QMD models, but less detailed
- The two models are used together
 - G4WilsonAbrasion handles the initial collision in which a chunk of the target nucleus is gouged out by the projectile nucleus
 - G4WilsonAblation handles the de-excitation of the resulting fragments
- Based on the NUCFRG2 model (NASA TP 3533)
- Can be used up to 10 GeV/n

Wilson Abrasion/Ablation

•

G4EMDissociation Model

- Electromagnetic dissociation is the liberation of nucleons or nuclear fragments as a result of strong EM fields
 - as when two high-Z nuclei approach one another
 - exchange of virtual photons instead of nuclear force
- Useful for relativistic nucleus-nucleus collisions where the Z of the nucleus is large
- Model and cross sections are an implementation of the NUCFRG2 model (NASA TP 3533)
- Can be used up to 100 TeV

INCL Nucleus-Nucleus

- Uses INCL hadron-nucleus model
- Projectile nucleus treated as a collection of nucleons without a nuclear potential, but with binding energy taken into account
- True potential is used for target nucleus
- Projectile nucleons can pass through to form fragments or interact with nucleus

G4QMD Model

BinaryLightIonReaction has some limitations

- neglects participant-participant scattering
- uses simple time-independent nuclear potential
- imposes small A limitation for target or projectile
- Binary cascade base model can only go to 5-10 GeV

Solution is QMD (quantum molecular dynamics) model

- an extension of the classical molecular dynamics model
- treats each nucleon as a gaussian wave packet
- propagation with scattering which takes Pauli principal into account
- can be used for high energy, high Z collisions

QMD Validation (1)

Ar40 560MeV/n on Lead

QMD Validation (2)

180MeV Proton on AI Fragment A=7

frgamentenergy [MeV]

Nucleus-nucleus Cross Sections

- G4ComponentGGNuclNuclXsc
 - corrections
- G4ComponentAntiNuclNucleusXS
 - nuclei
- G4IonsShenCrossSection
 - for incident ion energies between 10 MeV/n to 10 GeV/n
 - parameterized from data and theory

• Total, elastic and inelastic nucleus-nucleus cross sections using Glauber model with Gribov

• Total, elastic and inelastic cross sections for anti-nucleon and anti-nucleus scattering from

Capture

Capture and Stopping Models

Stopping

Stopped Hadron Models

- Derived from class G4HadronStoppingProcess
- G4HadronicAbsorptionBertini
 - at rest process implemented with Bertini cascade model
 - absorption of π^- , K^- and Σ^- with subsequent cascade
 - G4Precompound model used for de-excitation of nucleus
 - includes atomic cascade but not decay in orbit
- G4HadronicAbsorptionFritiof
 - absorption of \overline{p} and $\overline{\Sigma^+}$
 - FTF model used because > 2 GeV available in reaction
 - G4Precompound model used for de-excitation of nucleus
 - includes atomic cascade but not decay in orbit
- G4HadronicAbsorptionINCLXX
 - absorption of \overline{p}
 - INCL cascade followed by G4Precompound de-excitation of nucleus

25

Muon Capture using Bertini Model (red) Old model (black)

Stopped Muon Models

- depending on nuclear (A, Z) then nuclear de-excitation
- G4MuonMinusCapture
 - also derived from G4HadronStoppingProcess
 - atomic cascade, with decay in orbit enabled
 - K-shell capture and nuclear de-excitation implemented with Bertini cascade model
 - used in most physics lists
- G4MuMinusCapturePrecompound
 - atomic cascade, with decay in orbit enabled
 - K-shell capture uses simple particle-hole model
 - nuclear de-excitation handled by G4Precompound model

- Muon can decay in orbit, $\mu^- \to \ e^- \, \overline{
u_e} \, \nu_\mu$ or be captured in the nucleus, $\mu^- \, p \to n \, \nu_\mu$,

Capture Process and Models

- Neutrons, anti-neutrons never really stop, they just slow down from elastic scattering or are absorbed
 - kinetic energy must be taken into account
- G4NeutronCaptureProcess
 - in-flight capture of neutral hadrons (neutrons, anti-neutrons)
- Models
 - G4ParticleHPCapture (below 20 MeV)
 - G4NeutronRadCapture (all energies)
 - G4NeutronRadCaptureHP (below 20 MeV)

Fission Process and Models

- Many hadronic models include fission implicitly
 - nuclear de-excitation code, for example
 - In that case, don't add fission process to physics -> double counting
 - dedicated fission models usually needed only in special cases (reactor studies)
- G4NeutronFissionProcess
- Models
 - G4ParticleHPFission
 - for incident neutrons below 20 MeV
 - fission fragments produced if desired
 - G4WendtFissionFragmentGenerator
 - G4FissLib: Livermore Spontaneous Fission
 - handles spontaneous fission as an inelastic process
 - no fission fragments produced, just neutrons

29

Summary (1)

- All hadron elastic scattering is handled by one process
 - but implemented by several models depending on energy and particle type
- Specialized high precision models (n, p, d, t, ³He, α)
 - HP models which use G4NDL, now based entirely on JEFF-3.3
 - alternative LEND (Livermore) models are faster but currently less extensive new ones coming soon
- Several models for nucleus-nucleus collisions
 - Wilson models fast, but not so detailed
 - cascade models more detailed but slower
 - QMD model very detailed but not so fast

- Stopping processes for selected particle types
 - negative hadrons and muons
- Capture for neutrons
- Several fission models available
 - some implicitly included in other models
 - some must be explicitly added by users
 - make sure not to double-count !

