

Version 11.2.1

Geant4 Tutorial Course

Jefferson Lab, Newport News, VA, USA March 25-29 2024

Hadronic Physics I

<u>Maurizio Ungaro</u> Jefferson Lab

Original Content by Lorenzo Pezzotti (CERN)

Introduction

Geant4 particles and hadronic processes

- Hadronic physics: cross sections and final state models
- Hadronic physics framework
- Nuclear Capture at rest
- Neutron physics
- Datasets
- Hadronic physics in reference physics lists and extensible factory

... to be followed by Hadronic Physics II at this course

Geant4 particles

In Geant4 several G4ParticleDefinitions exist, i.e. "stable" particles described by their properties (mass, charge, ...)

- Leptons: e[±] (G4Electron, G4Positron),
 μ[±] (G4MuonMinus, G4MuonPlus), ...
- Bosons: γ (G4Gamma), G4OpticalPhoton
- G4Geantino, i.e. a particle with no processes except transportation
- "Stable" hadrons: π[±] (G4PionPlus, G4PionMinus), p (G4Proton), n (G4Neutron),
 ...
- Light ions: deuterium (G4Deuteron), tritium (G4Triton), ...
- Hyper and anti-hyper nuclei, i.e. nuclei with at least one hyperon (baryons with strange quark content): G4HyperTritium, G4HyperAlpha, ...
- Other ions: G4GenericIon describes all other ions

Geant4 particles

UI Commands:

/particle/select pi+
/particle/property/dump

/particle/select proton /particle/property/dump

G4ParticleDefinition Particle Name : pi+ PDG particle code : 211 [PDG anti-particle code: -211] Mass [GeV/c2] : 0.13957 Width : 2.5284e-17 Lifetime [nsec] : 26.033 Charge [e]: 1 Spin : 0/2 Parity : -1 Charge conjugation : 0 Isospin : (I,Iz): (2/2 , 2/2) GParity : -1 Quark contents (d,u,s,c,b,t) : 0, 1, 0, 0, 0, 0 AntiQuark contents : 1, 0, 0, 0, 0, 0 Lepton number : 0 Baryon number : 0 Particle type : meson [pi] G4DecayTable: pi+	<pre> G4ParticleDefinition Particle Name : proton PDG particle code : 2212 [PDG anti-particle code: -2212] Mass [GeV/c2] : 0.938272 Width : 0 Lifetime [nsec] : -1 Charge [e]: 1 Spin : 1/2 Parity : 1 Charge conjugation : 0 Isospin : (I,Iz): (1/2 , 1/2) GParity : 0 MagneticMoment [MeV/T] : 8.80432e-14 Quark contents (d,u,s,c,b,t) : 1, 2, 0, 0, 0, 0 AntiQuark contents : 0, 0, 0, 0, 0, 0 Lepton number : 0 Baryon number : 1 Particle type : baryon [nucleon]</pre>
GADecayTable: ni+	Particle type : baryon [nucleon]
0 + D = 1 [Dbaco Chaco] $I = multiple multi multi multiple multiple multiple multiple multiple multiple mult$	Atomic Number : 1 Atomic Mass : 1
o. Dr. I [Filase space] : IIIu+ IIu_IIIu	$Stable \cdot stable$

Geant4 particles and hadronic processes

Hadrons are particles interacting with nuclei via the strong interaction.

They play a crucial role in several physics simulation domains as collider physics (e.g. hadronic jets), nuclear physics (e.g. neutron shielding) and atmospheric physics (e.g. cosmic-ray showers).

♦ In Geant4 with hadronic physics we refer (with few exceptions) to the processes:

hadron + nucleus \rightarrow X

/particle/select proton

/particle/process/verbose 0

/particle/process/dump

Hadronic interactions

The most accurate theoretical description of hadronic interactions comes from QCD.

Good example, equation of cross section calculation for proton-proton interaction at the LHC:

Hadronic interactions

The most accurate theoretical description of hadronic interactions comes from QCD.

Good example, equation of cross section calculation for proton-proton interaction at the LHC:

Hadronic interactions

- QCD is only applicable through perturbative calculations of hard-scattering with high transverse momentum
- Equivalently, nucleons parton distribution functions are only valid for high transverse momentum interactions
- Therefore, Geant4 relies on approximate hadronic models with limited ranges of applicability depending on the particle type, energy and target material

Geant4, in first approximation:

1. Calculates the probability of a hadronic-nucleus interaction using hadronic cross section datasets

2. Determines the properties of the secondaries using hadronic final states models

Hadronic Cross Sections Datasets

- Hadronic cross section datasets refer to the total cross section for a hadronic-nucleus interaction (G4HadronicProcess::GetElementCrossSection())
 - Related to the length that a hadron projectile flies in a material before interacting
- In Geant4 there are only 2 types of hadronic cross sections (neutrons are an exception):
 - The elastic cross section describing the process for which the projectile and the target nucleus survive and no additional particles are created
 - The inelastic cross section describing the process for which any other final state is created
 - The hadron elastic process competes with the hadron inelastic one (as with any other process, e.g. ionization, bremsstrahlung, transportation, ...)

I NOTE: there are no differential cross sections in Geant4 for hadronic interactions. To get the differential cross section for secondaries in a given phase space one has to multiply the total cross section by the fraction of events corresponding to that final state

Hadronic Cross Sections Datasets

RunAction . cc - Example: get hadronic inelastic total cross section:

```
#include "G4UnitsTable.hh"
#include "G4Element.hh"
#include "G4Material.hh"
#include "G4Material.hh"
#include "G4HadronicProcessStore.hh"

void RunAction::EndOfRunAction(const G4Run * /*run*/) {
    if (isMaster) {
        G4HadronicProcessStore *hadstore = G4HadronicProcessStore::Instance();
        G4HadronicProcessStore *hadstore = G4HadronicProcessStore::Instance();
        G4Material *matPb = G4NistManager::Instance()->FindOrBuildMaterial("G4_Pb");
        G4Element *element = matPb->GetElement(0);
        G4double InelXS1 = hadstore->GetInelasticCrossSectionPerAtom(
            G4Proton::Proton(), 10. * GeV, element, matPb);
        G4cout << "InelXS 10 GeV p on Pb " << G4BestUnit(InelXS1, "Surface") << G4endl;
    }
}</pre>
```

Notice code modularity

Execution output:

InelXS 10 GeV p on Pb 1.83 barn

Hadronic Final States Models

- Hadronic final states models describe the properties of the secondaries from the hadronic interaction (G4HadronicProcess::GetHadronicInteraction())
 - Related to the number, type and properties of the secondaries produced by the interaction

When a process is selected against the others, a final state (distribution of secondaries) is produced by one of the hadronic models working in the current energy range

Cross Sections and Models

- ✦ For each combination of projectile energy target:
 - \geq 1 cross sections must be specified in a physics list
 - 1 or 2 (final-state) models must be specified in a physics list

Example: inactivate hadron inelastic (on Fe)

/gun/particle proton
/gun/energy 10 GeV

/gun/particle proton /gun/energy 10 GeV /process/inactivate protonInelastic proton

Geant4 Course | Maurizio Ungaro

13

Partial hadronic final states models inventory

NOTE: Physics list names are derived from the hadronic models used (see lesson *how to choose a physics list*)

Geant4 Course | Maurizio Ungaro

14

Hadronic Interactions from TeV to MeV

Example of final-state models transition

QGSP_BERT

Hadronic interactions Recap 1

Particles, Associated Processes, Datasets and Models

17

Hadronic interactions Recap 2

Cross section and Final State Model Management

Cross section management

Final state model management

Nuclear capture at rest

Affects negatively charged hadrons and muons at-rest

- In Geant4 charged particles can come at rest (i.e. kinetic energy = 0) due to energy losses by ionization (the simulation is realistic only above few keV)
- Negatively charged hadrons and muons at-rest might undergo an additional process, called (nuclear) capture at rest, for which they are absorbed by a nucleus
- Not to be confused with hadron inelastic process happening in-flight
- The probability for at-rest processes to occur is given by its lifetime (instead of the cross section)
- The nuclear capture at rest processes competes with the decay process

/particle/select pi/particle/process/verbose 0
/particle/process/dump

G4ProcessManager: particle[pi-]
<pre>[0]=== process[Transportation :Transportation] Active</pre>
<pre>[1]=== process[msc :Electromagnetic] Active</pre>
<pre>[2]=== process[hIoni :Electromagnetic] Active</pre>
<pre>[3]=== process[hBrems :Electromagnetic] Active</pre>
<pre>[4]=== process[hPairProd :Electromagnetic] Active</pre>
<pre>[5]=== process[CoulombScat :Electromagnetic] Active</pre>
<pre>[6]=== process[Decay :Decay] Active</pre>
<pre>[7]=== process[hadElastic :Hadronic] Active</pre>
<pre>[8]=== process[pi-Inelastic :Hadronic] Active</pre>
<pre>[9]=== process[hBertiniCaptureAtRest :Hadronic] Active</pre>
<pre>[10]=== process[StepLimiter :General] Active</pre>
<pre>[11]=== process[UserSpecialCut :General] Active</pre>

Nuclear capture at rest: 10 MeV proton in Iron

/gun/particle proton
/gun/energy 10 MeV
/tracking/verbose 2
/run/beamOn 1

****	*****	*****	*****	******	*****	*******	*******	*****	*****	*****	*****	
* G4	Track	Infor	mation:	Particle	e = proton,	Track	ID = 1,	Parent ID	= 0			
****	*****	*****	******	******	*****	******	*******	*****	*****	*****	< <u>*****</u>	
Step)#)	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextV	olume	ProcName	
	0	0	0	0	10	0	0	0		World	initStep	
	1	0	0	0.182	4.92	5.08	0.182	0.182		World	hIoni	
	2 0	.0104	-0.0106	0.261	0.0609	4.86	0.0805	0.263		World	hIoni	
	3 0	.0104	-0.0108	0.261	0.0125	0.0484	0.000532	0.263		World	hIoni	
	4 0	.0104	-0.0108	0.261	0	0.0125	0.000237	0.263		World	hIoni	
Run	termin	nated.										4

Nuclear capture at rest: 10 MeV proton in Iron

/gun/particle pi-/gun/energy 10 MeV /tracking/verbose 2 /run/beamOn 1

*****	*******	*****	******	********	*****	*******	********	*****	*****
* G4Tr	ack Infor	mation:	Particle	e = pi-,	Track ID	= 1, Pa	arent ID =	0	
*****	*******	******	*******	*******	*******	********	********	*****	*****
Step#	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName
0	0	0	0	10	0	0	0	World	initStep
1	0	0	0.364	7.87	2.13	0.366	0.366	World	hIoni
2	0.0197	0.00231	0.652	6.03	1.84	0.291	0.657	World	hIoni
3	0.0132	-0.0289	0.88	3.92	2.11	0.232	0.889	World	hIoni
4	-0.0101	-0.0447	1.04	1.74	2.18	0.164	1.05	World	hIoni
5	-0.0275	-0.0478	1.09	0.0177	1.72	0.0529	1.11	World	hIoni
6	-0.0275	-0.0478	1.09	0	0.0177	0.000351	1.11	World	hIoni
7	-0.0275	-0.0478	1.09	0	0	0	1.11	World	hBertiniCaptureAtRest
:-	- List of	2ndaries	– #Spawr	nInStep= 23	B(Rest=23,	,Along= 0,	Post= 0),	#SpawnTotal=	= 23
:	-0.0275	-0.047	8 1.09	0.00968		e-	-		

A special case: neutrons

Example: inspect neutron processes (FTFP_BERT)

 Neutrons are crucial particles for every simulation involving hadronic physics (e.g. hadronic calorimeters, nuclear reactors, shielding, ...)

- Typically several soft neutrons are released from nuclei de-excitation after the hadron inelastic process (notice lepto-nuclear and gamma-nuclear processes release neutrons too)
- The nCapture (radiative capture) process can happen *in-flight* (differently from the radiative capture at rest for negatively charged hadrons), the neutron is absorbed by a nucleus which emits (see next slide)

/particle/select neutron
/particle/process/verbose 0

/particle/process/dump

G4ProcessManager: particle[neutron]	
<pre>[0]=== process[Transportation :Transportation] Act;</pre>	ive
<pre>[1]=== process[Decay :Decay] Active</pre>	
<pre>[2]=== process[hadElastic :Hadronic] Active</pre>	
[3]=== process[neutronInelastic :Hadronic] Active	
<pre>[4]=== process[nCapture :Hadronic] Active</pre>	
<pre>[5]=== process[nKiller :General] Active</pre>	
<pre>[6]=== process[UserSpecialCut :General] Active</pre>	

NOTE: In hadronic showers neutrons are typically the third most abundant particles produced, after photons and e-

Geant4 Course | Maurizio Ungaro

1 MeV neutron in Iron

/gun/particle neutron
/gun/energy 1 MeV
/tracking/verbose 2
/run/beamOn 1

*****	*****	******	*******	*******	******	*******	******	*****	*****
* G4Tra	ack Inform	ation:	Particle	= neutron	, Tracl	< ID = 1,	Parent 1	ID = 0	
******	*****	*******	*******	******	******	********	********	****	*****
Step#	X (mm)	Y(mm)	Z(mm) K	(inE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName
0	0	0	0	1	0	0	0	World	initStep
1	0	0	0.311	0.962	0.0384	0.311	0.311	World	hadElastic
2	-51.8	34.7	-4.95	0.94	0.0213	62.5	62.9	World	hadElastic
3	-61.4	50.3	-57.5	0.931	0.00918	55.6	118	World	hadElastic
• • •									
170	27.6	242	270	0	0	6.24	3 . 86e+03	World	nCapture
	List	of 2ndari	ies – #Spa	wnInStep=	2(Rest	= 0,Along=	= 0,Post= 2	2), #SpawnTot	tal= 2
:	27.6	242	2 27	7.	63	ga	amma		
:	27.6	242	2 27	0 0.0005	03	Fe57[14.4	413]		
:								EndOf2ndarie	es Info

A special case: neutrons

- As neutrons do not loose energy by ionization, they usually undergo many elastic collisions (eventually down to thermalization) with nuclei before being killed
- In Geant4 neutrons can be killed by the hadron inelastic process, the decay process, the radiative capture process, the *nKiller* process (default threshold 10 us) or by the Geant4 kernel (*out-of-world killed*)
- Neutron cross sections are wild: they depend, sometimes dramatically and unpredictably, on the neutron energy and the target element/isotope
- The CPU time varies up to one order of magnitude depending on the accuracy of neutron simulation
 - For most high-energy physics and nuclear applications, a simplified and fast description is usually sufficient (FTFP_BERT, QGSP_BERT, ...)
 - Where more accuracy is needed, Geant4 offers a more precise, data-driven and isotopespecific treatment for neutrons, for kinetic energies <20 MeV (see lesson *Hadronic Physics II*)

24

Datasets

Some hadronic models, for both final states and cross sections, are data-driven, i.e. they need as input phenomenological data; similarly, some need as input the result of intensive computation that are performed before the simulation

- The -DGEANT4_INSTALL_DATA=0N cmake option sets the datasets automatic download and installation
- The following envs are exported by /path-to/geant4-install/bin/geant4.sh and linked to datasets:

Mandatory to all physics list

G4LEDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/G4EMLOW8.5</pre>
G4LEVELGAMMADATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/PhotonEvaporation5.7</pre>
G4PARTICLEXSDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/G4PARTICLEXS4.0</pre>
G4SAIDXSDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/G4SAIDDATA2.0</pre>
G4ENSDFSTATEDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/G4ENSDFSTATE2.3</pre>

G4NEUTRONHPDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/G4NDL4.7</pre>
G4RADIOACTIVEDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/RadioactiveDecay5.6</pre>
G4PIIDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/G4PII1.3</pre>
G4REALSURFACEDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/RealSurface2.2</pre>
G4ABLADATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/G4ABLA3.3</pre>
G4INCLDATA	<pre>= /path-to/geant4-install/data/Geant4-11.2.1/data/G4INCL1.2</pre>

Needed only by specific physics list

Datasets

Mandatory to all physics list

- G4LEDATA : low-energy electromagnetic data, mostly derived from Livermore data libraries; used in all EM options
- G4LEVELGAMMADATA : photon evaporation data, come from the Evaluated Nuclear Structure Data File (ENSDF); used by Precompound/de-excitation models (and RadioactiveDecay if present)
- G4SAIDXSDATA : data evaluated from the SAID database for nucleon and pion cross sections below 3 GeV; used in all physics lists
- G4PARTICLEXSDATA : evaluated neutron (as well as proton, deuteron, triton, He3, alpha, gamma, neutrino) cross sections derived from G4NDL by averaging in bin of energies; used in all physics lists
- G4ENSDFSTATEDATA : nuclear properties, from Evaluated Nuclear Structure Data File (ENSDF); used in all physics lists

26

Datasets

Needed only by specific physics list

- G4REALSURFACEDATA : data for measured optical surface reflectance look-up tables; used only when optical physics is activated
- G4NEUTRONHPDATA : evaluated neutron data of cross sections, angular distributions and final-state information; come largely from the JEFF-3.3 library; used only in _HP physics lists (see Hadronic Physics II at this course)
- G4RADIOACTIVEDATA : radioactive decay data, come from the ENSDF; used only when radioactive decay is activated (see Hadronic Physics II at this course)
- ◆ G4INCLDATA : data for the intranuclear cascade model INCLXX
- G4ABLADATA : data for the ABLA de-excitation model, which is an alternative de-excitation available for INCLXX

Physics Lists

Reminders: See Also Physics Overview I

- A physics list is a class that constructs all the particles and the associated processes
- One (and only one) physics list must be present in a Geant4 simulation
- Users can:
 - Build their own custom physics list
 - Use a reference physics list
 - New: Use extensible factory
- A reference physics list is a pre-packaged collection of physics processes.
 Using a reference physics list is straightforward, e.g. in main()
- No default physic list (and no default physics) is provided by Geant4, the user is responsible to choose or create a Physics List
- A modular physics list implements a granular approach to physics via constructors

How to use a Reference Physics List

```
Method 1: use it directly
#include "FTFP_BERT.hh"
int main( int argc, char** argv ) {
    ...
    auto physicsList = new FTFP_BERT;
    runManager->SetUserInitialization( physicsList );
    ...
}
```

```
Method 2: modular using extensibleFactory
#include "G4PhysListFactoryAlt.hh"
#include "G4VModularPhysicsList.hh"
int main( int argc, char** argv ) {
    ...
G4PhysListFactory factory;
    const G4String pName = "FTFP_BERT";
    G4VModularPhysicsList*
        phys = factory.GetReferencePhysList(pName);
    runManager->SetUserInitialization(phys);
    ...
}
```

source/source/physics_lists/lists/src/FTFP_BERT.cc

```
FTFP BERT::FTFP BERT(G4int ver)
 if(ver > 0) {
   G4cout << "<<< Geant4 Physics List simulation
engine: FTFP BERT"<<G4endl;</pre>
   G4cout <<G4endl;
  defaultCutValue = 0.7*CLHEP::mm;
  SetVerboseLevel(ver);
 // EM Physics
 RegisterPhysics( new G4EmStandardPhysics(ver));
  // Synchroton Radiation & GN Physics
  RegisterPhysics( new G4EmExtraPhysics(ver) );
  // Decays
  RegisterPhysics( new G4DecayPhysics(ver) );
  // Hadron Elastic scattering
  RegisterPhysics( new G4HadronElasticPhysics(ver) );
  // Hadron Physics
  RegisterPhysics( new G4HadronPhysicsFTFP BERT(ver));
  // Stopping Physics
  RegisterPhysics( new G4StoppingPhysics(ver) );
  // Ion Physics
 RegisterPhysics( new G4IonPhysics(ver));
  // Neutron tracking cut
 RegisterPhysics( new G4NeutronTrackingCut(ver));
```

pName can also be: "FTFP_BERT + G4RadioactiveDecayPhysics"

See also examples/extended/physicslists/extensibleFactory

Reference physics lists

Check also naming conventions

The **FTFP_BERT** is the recommended one for high-energy physics simulations. It adopts the models:

- Standard e.m. processes
- FTF: (Fritiof) hadronic string model for hadron inelastic process >~ 4 GeV
- P: G4Precompound model for nucleus de-excitation + evaporation models
- ◆ **BERT**: (Bertini) intra-nuclear cascade model for the hadron inelastic process <~ 6 GeV
- Plus: neutron radiative capture, nuclear capture at rest for negatively charged hadrons, elastic scattering for hadrons, lepto-nuclear and gamma-nuclear processes and standard em physics (*compton, pair-production, photoelectric effect, …*)
- No high-precision treatment of low-energy neutrons (explained in hadronic physics II), no radioactive decays (explained in hadronic physics II), no optical photons

NOTE: ATLAS, CMS, LHCb and ALICE use mild-variants (tuning) of this physics list (e.g. the **FTFP_BERT_ATL** physics list used by the ATLAS Experiment)

Reference physics lists

Check also naming conventions

QGSP_BIC_HP

- Standard e.m. processes
- QGS: quark-gluon string model for hadron inelastic process > 25 GeV
- ◆ FTF: (Fritiof) hadronic string model for hadron inelastic process 9.5 25 GeV
- P: G4Precompound model for nucleus de-excitation + evaporation models
- **BIC**: Binary interaction cascade model for the hadron inelastic process 200 MeV 9.9 GeV
- Plus: neutron radiative capture, nuclear capture at rest for negatively charged hadrons, elastic scattering for hadrons, lepto-nuclear and gamma-nuclear processes and standard em physics (compton, pair-production, photoelectric effect, ...)
- ✦ HP high precision neutron, proton, d, t, 3He, alpha interaction model (< 20 MeV)</p>

Reference physics lists

Other relevant reference physics lists for hadronic physics are:

- The FTFP_BERT_HP: same as FTFP_BERT but using the high-precision neutron treatment for low energy neutrons (< 20 MeV)</p>
- The QGSP_BERT: same as FTFP_BERT but uses the QGS (Quark Gluon String) model for the hadron inelastic process with an energy transition range with FTF of [12,25] GeV

NOTE: Below 12 GeV QGSP_BERT and FTFP_BERT are identical

- The FTFP_INCLXX: uses the INCLXX model for the inelastic process of protons, neutrons and charged pions. The INCLXX and the FTF models intersect in the energy range [15,20] GeV
- The QGSP_BIC: uses both FTF and QGS models for high-energy interactions and both BERT and BIC (Binary Cascade) models for low-energy interactions, as
 - Protons, neutrons: BIC < 6 GeV, FTFP [3,25] GeV and QGSP > 12 GeV
 - Pions and kaons: BERT < 6 GeV, FTFP [3,25] GeV and QGSP > 12 GeV

Summary

- Geant4 implements two main hadronic processes, the hadron elastic and the hadron inelastic processes
- ✦ Geant4 covers nearly all particles over energies ranging from 0 to ~TeV
- + For negatively charged hadrons the *nuclear capture at rest* process is included as well
- For neutrons the radiative capture process is also included
- In Geant4 cross section datasets and final states models are clearly separated (no differential cross sections available)
- Several final state models are available and applicable to restricted combinations of energies, particles and materials
- Reference physics lists construct hadronic physics by picking up both hadronic final states models and cross section datasets
- Typically reference physics lists are named after the hadronic final state models adopted
- Choosing the appropriate physics list for a given application requires care and validation

33