
Version 11.2-p01

Kernel I

Makoto Asai (Jefferson Lab)
Geant4 Tutorial Course

• General introduction and brief history

• Geant4 license

• Geant4 kernel
－Basic concepts and kernel structure
－User classes

Contents

2

• General introduction and brief history

• Geant4 license

• Geant4 kernel
－Basic concepts and kernel structure
－User classes

Contents

3

Key Geant4 functionalities

• Geant4 is a general purpose Monte Carlo simulation tool for
elementary particles passing through and interacting with
matter. It finds quite a wide variety of user domains including
high energy and nuclear physics, space engineering, medical
applications, material science, radiation protection and security.

• Geant4 offers most, if not all, of the functionalities required for
the simulation of elementary particle and nucleus passing
through and interacting with matter.
－Kernel
－Geometry and navigation
－Physics processes
－Scoring
－GUI and Visualization drivers

• Thanks to the polymorphism mechanism of C++, the users can
easily plug-in their extensions without interfering with the other
part of Geant4.

• Extensive user guide documents and examples are provided.

Kernel I - M. Asai (JLab) 4

Key geometry capabilities

• Richest collection of shapes
－CSG (Constructed Solid Geometry), Boolean

operation, Tessellated solid, etc.
－The user can easily extend

• Describing a setup as hierarchy or ‘flat’ structure
－Describing setups up to billions of volumes
－Tools for creating & checking complex

structures
－ Interface to CAD

• Navigating fast in complex geometry model
－Automatic optimization

• Geometry models can be ‘dynamic’
－Changing the setup at run-time, e.g. “moving

objects”

Kernel I - M. Asai (JLab) 5

Physics models in Geant4

• Geant4 offers

－Electromagnetic processes

－Hadronic and nuclear processes

－Photon/lepton-hadron processes

－Optical photon processes

－Decay processes

－Shower parameterization

－Event biasing techniques

－And you can plug-in more

• Geant4 provides sets of alternative physics
models so that the user can freely choose
appropriate models according to the type of
his/her application.

－For example, some models are more
accurate than others at a sacrifice of speed.

Kernel I - M. Asai (JLab) 6

Geant4 History

• Early discussions even before having reliable C++ compilers.

• Dec ’94 – R&D project start

• Apr ’97 - First alpha release

• Jul ’98 - First beta release

• Dec ’98 - First Geant4 public release - version 1.0

• Several major architectural revisions

－E.g. STL migration, “cuts per region”, parallel worlds,
command-based scorer, multithreading, task-based parallelization

• Dec 8th, ’23 – Geant4 version 11.2 release

－ Feb 16th, ’24 - Geant4 11.2-patch01 release

• We currently provide one public release every year.

－Next version - Geant4 11.3 (planned on December 2024)

Kernel I - M. Asai (JLab) 7

R&
D

ph
as

e
Pr

od
uc

tio
n

ph
as

e

Current version

https://geant4.org/

Kernel I - M. Asai (JLab) 8

Geant4 – a simulation toolkit

Kernel I - M. Asai (JLab) 9

Geant4 developments and applications

Kernel I - M. Asai (JLab) 10

Recent developments in Geant4

Kernel I - M. Asai (JLab) 11

• General introduction and brief history

• Geant4 license

• Geant4 kernel
－Basic concepts and kernel structure
－User classes

Contents

12

In response to user requests
for clarification of Geant4’s
distribution policy, the
collaboration announced a
license.

It makes clear the user’s
wide-ranging freedom to
use, extend or redistribute
Geant4, even as part of
some for-profit venture.

https://geant4.web.cern.ch/
download/license

Geant4 license

Kernel I - M.Asai (SLAC) 13

https://geant4.web.cern.ch/download/license
https://geant4.web.cern.ch/download/license

Installation, use, reproduction, display, modification and redistribution of this software, with or
without modification, in source and binary forms, are permitted on a non- exclusive basis. Any
exercise of rights by you under this license is subject to the following conditions:

1. Redistributions of this software, in whole or in part, with or without modification, must
reproduce the above copyright notice and these license conditions in this software, the user
documentation and any other materials provided with the redistributed software.

2. The user documentation, if any, included with a redistribution, must include the following notice:
"This product includes software developed by Members of the Geant4 Collaboration
(http://geant4.org)."

If that is where third-party acknowledgments normally appear, this acknowledgment must be
reproduced in the modified version of this software itself.

3. The names "Geant4” and “The Geant4 toolkit” may not be used to endorse or promote software,
or products derived therefrom, except with prior written permission by license@geant4.org. If this
software is redistributed in modified form, the name and reference of the modified version must be
clearly distinguishable from that of this software.

License has 8 points. The points are written clearly and simply.

1,2 and 3) tell the world who the software came from, and don’t claim you are us.

Geant4 license

Kernel I - M.Asai (SLAC) 14

4. You are under no obligation to provide anyone with any modifications of this software that you
may develop, including but not limited to bug fixes, patches, upgrades or other enhancements or
derivatives of the features, functionality or performance of this software. However, if you publish or
distribute your modifications without contemporaneously requiring users to enter into a separate
written license agreement, then you are deemed to have granted all Members and all Copyright
Holders of the Geant4 Collaboration a license to your modifications, including modifications
protected by any patent owned by you, under the conditions of this license.

5. You may not include this software in whole or in part in any patent or patent application in
respect of any modification of this software developed by you.

4) If you choose to give it away free to everyone, we can have it for free too.

5) You can’t patent the parts we did.

Geant4 license

Kernel I - M.Asai (SLAC) 15

6. DISCLAIMER
THIS SOFTWARE IS PROVIDED BY THE MEMBERS AND COPYRIGHT HOLDERS OF THE
GEANT4 COLLABORATION AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, OF SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR
PURPOSE OR USE ARE DISCLAIMED. THE MEMBERS OF THE GEANT4 COLLABORATION
AND CONTRIBUTORS MAKE NO REPRESENTATION THAT THE SOFTWARE AND
MODIFICATIONS THEREOF, WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADE
SECRET OR OTHER PROPRIETARY RIGHT.

7. LIMITATION OF LIABILITY
THE MEMBERS AND COPYRIGHT HOLDERS OF THE GEANT4 COLLABORATION AND
CONTRIBUTORS SHALL HAVE NO LIABILITY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY
CHARACTER INCLUDING, WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, LOSS OF USE, DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOWEVER
CAUSED AND ON ANY THEORY OF CONTRACT, WARRANTY, TORT (INCLUDING
NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE, ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

8. This license shall terminate with immediate effect and without notice if you fail to comply with
any of the terms of this license, or if you institute litigation against any Member or Copyright
Holder of the Geant4 Collaboration with regard to this software.

We don’t claim that it works, and we’re not responsible if it doesn’t.

Geant4 license

Kernel I - M.Asai (SLAC) 16

• General introduction and brief history

• Geant4 license

• Geant4 kernel
－Basic concepts and kernel structure
－User classes

Contents

17

Terminology (jargons)

• Run, event, track, step, step point

• Track fg trajectory, step fg trajectory point

• Process
－At rest, along step, post step

• Cut = production threshold

• Sensitive detector, score, hit, hits collection,

Kernel I - M. Asai (JLab) 18

Run in Geant4

• As an analogy of the real experiment, a run of Geant4 starts with “Beam On”.

• Within a run, the user cannot change

－detector setup

－settings of physics processes

• Conceptually, a run is a collection of events which share the same detector and
physics conditions.

－A run consists of one event loop.

• At the beginning of a run, geometry is optimized for navigation and cross-section
tables are calculated according to materials appear in the geometry and the cut-off
values defined.

• G4RunManager class manages processing a run, a run is represented by G4Run
class or a user-defined class derived from G4Run.

－A run class may have a summary results of the run.

• G4UserRunAction is the optional user hook.

Kernel I - M. Asai (JLab) 19

Event in Geant4

• An event is the basic unit of simulation in Geant4.

• At beginning of processing, primary tracks are generated. These primary tracks are
pushed into a stack.

• A track is popped up from the stack one by one and “tracked”. Resulting secondary
tracks are pushed into the stack.

－This “tracking” lasts as long as the stack has a track.

• When the stack becomes empty, processing of one event is over.

• G4Event class represents an event. It has following objects at the end of its
(successful) processing.

－List of primary vertices and particles (as input)

－Hits and Trajectory collections (as output)

• G4EventManager class manages processing an event. G4UserEventAction is the
optional user hook.

Kernel I - M. Asai (JLab) 20

Track in Geant4

• Track is a snapshot of a particle.
－It has physical quantities of current instance only. It does not record previous

quantities.
－Step is a “delta” information to a track. Track is not a collection of steps.

Instead, a track is being updated by steps.

• Track object is deleted when
－it goes out of the world volume,
－it disappears (by e.g. decay, inelastic scattering),
－it goes down to zero kinetic energy and no “AtRest” additional process is

required, or
－the user decides to kill it artificially.

• No track object persists at the end of event.
－For the record of tracks, use trajectory class objects.

• G4TrackingManager manages processing a track, a track is represented by
G4Track class.

• G4UserTrackingAction is the optional user hook.

Kernel I - M. Asai (JLab) 21

Step in Geant4

• Step has two points and also “delta” information of a particle (energy loss on
the step, time-of-flight spent by the step, etc.).

• Each point knows the volume (and material). In case a step is limited by a
volume boundary, the end point physically stands on the boundary, and it
logically belongs to the next volume.

－Because one step knows materials of two volumes, boundary processes
such as transition radiation or refraction could be simulated.

• G4SteppingManager class manages processing a step, a step is represented
by G4Step class.

• G4UserSteppingAction is the optional user hook.

Kernel I - M. Asai (JLab) 22

Pre-step point
Post-step point

Step

Boundary

Trajectory and trajectory point

• Track does not keep its trace. No track object persists at the end of event.

• G4Trajectory is the class which copies some of G4Track information.
G4TrajectoryPoint is the class which copies some of G4Step information.
－G4Trajectory has a vector of G4TrajectoryPoint.
－At the end of event processing, G4Event has a collection of G4Trajectory

objects.
• /tracking/storeTrajectory must be set to 1.

• Keep in mind the distinction.
－G4Track fg G4Trajectory, G4Step fg G4TrajectoryPoint

• Given G4Trajectory and G4TrajectoryPoint objects persist till the end of an event,
you should be careful not to store too many trajectories.
－E.g. avoid for high energy EM shower tracks.

• G4Trajectory and G4TrajectoryPoint store only the minimum information.
－You can create your own trajectory / trajectory point classes to store

information you need. G4VTrajectory and G4VTrajectoryPoint are base classes.

Kernel I - M. Asai (JLab) 23

Particle in Geant4

• A particle in Geant4 is represented by three layers of classes.

• G4Track
－Position, geometrical information, etc.
－This is a class representing a particle to be tracked.

• G4DynamicParticle
－"Dynamic" physical properties of a particle, such as momentum, energy, spin,

etc.
－Each G4Track object has its own and unique G4DynamicParticle object.
－This is a class representing an individual particle.

• G4ParticleDefinition
－"Static" properties of a particle, such as charge, mass, life time, decay

channels, etc.
－G4ProcessManager which describes processes involving to the particle
－All G4DynamicParticle objects of same kind of particle share the same

G4ParticleDefinition.

Kernel I - M. Asai (JLab) 24

Tracking and processes

• Geant4 tracking is general.

－It is independent to

• the particle type

• the physics processes involving to a particle

－It gives the chance to all processes

• To contribute to determining the step length

• To contribute any possible changes in physical quantities of the track

• To generate secondary particles

• To suggest changes in the state of the track

－ e.g. to suspend, postpone or kill it.

Kernel I - M. Asai (JLab) 25

Processes in Geant4

• In Geant4, “process” is an abstract concept that may affect any of the track data.
－Momentum, energy, position, secondary generation, fate of the track, etc.

• Particle transportation is a process as well, by which a particle interacts with geometrical
volume boundaries and field of any kind.
－Because of this, shower parameterization process can take over from the ordinary

transportation without modifying the transportation process.

• Each particle has its own list of applicable processes. At each step, all processes listed are
invoked to get proposed physical interaction lengths.

• The process which requires the shortest interaction length (in space-time) limits the step.

• Each process has one or combination of the following natures.
－AtRest

• e.g. muon decay at rest
－AlongStep (a.k.a. continuous process)

• e.g. Celenkov process
－PostStep (a.k.a. discrete process)

• e.g. decay on the fly

Kernel I - M. Asai (JLab) 26

Process competition

• “Ordinary” physics makes point-like interaction. Given many physics
processes have chances to occur, one needs to make a fair competition
among these eligible processes.

• Given PDF of each process, one can sample the path length normalized by
mean free path (radiation length, hadronic interaction length, decay time,
etc.) for each physics process.

• Compare the path lengths proposed by all physics processes. The process
that proposes the shortest length occurs.
－Given the length is normalized, competition should be made by the

actual length (normalized length x mean free path of the material).
• Once the particle experiences an interaction by a physics process, the path

length for that process is re-sampled, while proposed path lengths of other
processes are reduced by the length traveled.

• Continuous processes (continuous energy loss, multiple scattering,
Cherenkov radiation, etc.) are applied cumulatively.

Kernel I - M. Asai (JLab) 27

Process A
Process B
Process C

Cuts in Geant4

• A Cut in Geant4 is a production threshold.
－Not tracking cut, which does not exist in Geant4 as default.

• All tracks are traced down to zero kinetic energy.
－It is applied only for physics processes that have infrared

divergence

• Much detail will be discussed at later talks on physics.

Kernel I - M. Asai (JLab) 28

Track status

• At the end of each step, according to the processes involved, the state of a track
may be changed.
－The user can also change the status in UserSteppingAction.
－Statuses shown in green are artificial, i.e. Geant4 kernel won’t set them, but

the user can set.
• fAlive

－Continue the tracking.
• fStopButAlive

－The track has come to zero kinetic energy, but still AtRest process to occur.
• fStopAndKill

－The track has lost its identity because it has decayed, interacted or gone
beyond the world boundary.

－Secondaries will be pushed to the stack.
• fKillTrackAndSecondaries

－Kill the current track and also associated secondaries.
• fSuspend

－Suspend processing of the current track and push it and its secondaries to the
stack.

• fSuspendAndWait
－Suspend processing of the current track and force it into the waiting stack.

• fPostponeToNextEvent
－Postpone processing of the current track to the next event.
－Secondaries are still being processed within the current event.

Kernel I - M. Asai (JLab) 29

Step status
• Step status is attached to G4StepPoint to indicate why that particular step was

determined.
－Use “PostStepPoint” to get the status of this step.
－ “PreStepPoint” has the status of the previous step.

－ fWorldBoundary
• Step reached the world boundary

－ fGeomBoundary
• Step is limited by a volume boundary except the world

－ fAtRestDoItProc, fAlongStepDoItProc, fPostStepDoItProc
• Step is limited by a AtRest, AlongStep or PostStep process

－ fUserDefinedLimit
• Step is limited by the user Step limit

－ fExclusivelyForcedProc
• Step is limited by an exclusively forced (e.g. shower parameterization) process

－ fUndefined
• Step not defined yet

• If you want to identify the first step in a volume, pick fGeomBoudary status in
PreStepPoint.

• If you want to identify a step getting out of a volume, pick fGeomBoundary status in
PostStepPoint

Kernel I - M. Asai (JLab) 30

Step
PreStepPoint PostStepPoint

Extract useful information

• Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”.
－You have to do something to extract information useful to you.

• There are three ways:
－Built-in scoring commands

• Most commonly-used physics quantities are available.
－Use scorers in the tracking volume

• Create scores for each event
• Create own Run class to accumulate scores

－Assign G4VSensitiveDetector to a volume to generate “hit”.
• Use user hooks (G4UserEventAction, G4UserRunAction) to get event

/ run summary

• You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction,
etc.)
－You have full access to almost all information
－Straight-forward in sequential mode, but do-it-yourself

Kernel I - M. Asai (JLab) 31

Unit system

• Internal unit system used in Geant4 is completely hidden not only from user’s code

but also from Geant4 source code implementation.

• Each hard-coded number must be multiplied by its proper unit.

radius = 10.0 * cm;

kineticE = 1.0 * GeV;

• To get a number, it must be divided by a proper unit.

G4cout << eDep / MeV << “ [MeV]” << G4endl;

• Most of commonly used units are provided and user can add his/her own units.

• By this unit system, source code becomes more readable and importing / exporting
physical quantities becomes straightforward.

－For particular application, user can change the internal unit to suitable

alternative unit without affecting to the result.

Kernel I - M. Asai (JLab) 32

Geant4 as a state machine
• Geant4 has seven application states.

－G4State_PreInit
• Initial condition

－G4State_Init
• During initialization

－G4State_Idle
• Ready to start a run

－G4State_GeomClosed
• Geometry is optimized and ready to

process an event
－G4State_EventProc

• An event is processing
－G4State_Quit

• (Normal) termination
－G4State_Abort

• A fatal exception occurred and
program is aborting

Kernel I - M. Asai (JLab) 33

Note: Toggles between GeomClosed and EventProc occur
for each thread asynchronously in multithreaded mode.

PreInit

Idle

EventProc

GeomClosed

Quit

Abort

initialize

beamOn exit

R
u
n

(
e
v
e
n
t

l
o
o
p
)

Init

G4cout, G4cerr

• G4cout and G4cerr are ostream objects defined by Geant4.

－G4endl is also provided.

G4cout << ”Hello Geant4!” << G4endl;

• Some GUIs are buffering output streams so that they display print-outs on

another window or provide storing / editing functionality.

－The user should not use std::cout, etc.

• The user should not use std::cin for input. Use user-defined commands

provided by intercoms category in Geant4.

－Ordinary file I/O is OK.

Kernel I - M. Asai (JLab) 34

• General introduction and brief history

• Geant4 kernel
－Basic concepts and kernel structure
－User classes

Contents

35

To use Geant4, you have to…

• Geant4 is a toolkit. You have to build an application.

• To make an application, you have to
－Define your geometrical setup

• Material, volume
－Define physics to get involved

• Particles, physics processes/models
• Production thresholds

－Define how an event starts
• Primary track generation

－Extract information useful to you

• You may also want to
－Visualize geometry, trajectories and physics output
－Utilize (Graphical) User Interface
－Define your own UI commands
－etc.

Kernel I - M. Asai (JLab) 36

User classes
• main()
－Geant4 does not provide main().

• Initialization classes
－Use G4RunManager::SetUserInitialization() to define.
－Invoked at the initialization

• G4VUserDetectorConstruction
• G4VUserPhysicsList
• G4VUserActionInitialization

• Action classes
－Instantiate in your G4VUserActionInitialization.
－Invoked during an event loop

• G4VUserPrimaryGeneratorAction
• G4UserRunAction
• G4UserEventAction
• G4UserStackingAction
• G4UserTrackingAction
• G4UserSteppingAction

Kernel I - M. Asai (JLab) 37

Note : classes written in red are
mandatory.

The main program
• Geant4 does not provide a main().

• In your main(), you have to
－ Construct G4RunManager

• G4RunManagerFactory::CreateRunManager() instantiates a RunManager of your choice.
－ “Tasking” : G4TaskingRunManager (tasking mode – default)
－ “TBB” : G4TBBRunManager (tasking mode with TBB)
－ “MT” : G4MTRunManager (multithreaded mode based on p-thread)
－ “Serial” : G4Runmanager (sequential mode)

• Environment variables may overwrite the choice.
－ G4RUN_MANAGER_TYPE can be set to override the "default"

• If the requested type isn't available, then it will fall back to the system default
－ G4FORCE_RUN_MANAGER_TYPE can be set to force a specific type

• A G4Exception is raised if the requested type is not available
－ Set user mandatory initialization classes to RunManager

• G4VUserDetectorConstruction
• G4VUserPhysicsList
• G4VUserActionInitialization

• You can define VisManager, (G)UI session, optional user action classes, and/or your persistency
manager in your main().

Kernel I - M. Asai (JLab) 38

Describe your detector

• Derive your own concrete class from G4VUserDetectorConstruction abstract
base class.

• In the virtual method Construct(), that is invoked in the master thread (and in
sequential mode)

－Instantiate all necessary materials

－Instantiate volumes of your detector geometry

• In the virtual method ConstructSDandField(), that is invoked in each worker
thread (and in sequential mode)

－Instantiate your sensitive detector classes and field classes and set them
to the corresponding logical volumes and field managers, respectively.

Kernel I - M. Asai (JLab) 39

Select physics processes

• Geant4 does not have any default particles or processes.

－Even for the particle transportation, you have to define it explicitly.

• Derive your own concrete class from G4VUserPhysicsList abstract base class.

－Define all necessary particles

－Define all necessary processes and assign them to proper particles

－Define cut-off ranges applied to the world (and each region)

• Primarily, the user’s task is choosing a “pre-packaged” physics list, that
combines physics processes and models that are relevant to a typical
application use-cases.

－If “pre-packaged” physics lists do not meet your needs, you may add or
alternate some processes/models.
－If you are brave enough, you may implement your own physics list.

Kernel I - M. Asai (JLab) 40

Generate primary event

• This is the only mandatory user action class.

• Derive your concrete class from G4VUserPrimaryGeneratorAction abstract base

class.

• Pass a G4Event object to one or more primary generator concrete class objects

which generate primary vertices and primary particles.

• Geant4 provides several generators in addition to the G4VPrimaryParticlegenerator

base class.

－G4ParticleGun

－G4HEPEvtInterface, G4HepMCInterface

• Interface to /hepevt/ common block or HepMC class

－G4GeneralParticleSource

• Define radioactivity

Kernel I - M. Asai (JLab) 41

Optional user action classes
• All user action classes, methods of which are invoked during “Beam On”, must

be constructed in the user’s main() and must be set to the RunManager.

• G4UserRunAction
－G4Run* GenerateRun()

• Instantiate user-customized run object
－void BeginOfRunAction(const G4Run*)

• Define histograms
－void EndOfRunAction(const G4Run*)

• Analyze the run
• Store histograms

• G4UserEventAction
－void BeginOfEventAction(const G4Event*)

• Event selection
－void EndOfEventAction(const G4Event*)

• Output event information

Kernel I - M. Asai (JLab) 42

Optional user action classes
• G4UserStackingAction

－void PrepareNewEvent()

• Reset priority control

－G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)

• Invoked every time a new track is pushed

• Classify a new track -- priority control

－ Urgent, Waiting, PostponeToNextEvent, Kill

－void NewStage()

• Invoked when the Urgent stack becomes empty

• Change the classification criteria

• Event filtering (Event abortion)

Kernel I - M. Asai (JLab) 43

Optional user action classes

• G4UserTrackingAction

－void PreUserTrackingAction(const G4Track*)

• Decide trajectory should be stored or not

• Create user-defined trajectory

－void PostUserTrackingAction(const G4Track*)

• Delete unnecessary trajectory

• G4UserSteppingAction

－void UserSteppingAction(const G4Step*)

• Kill / suspend / postpone the track

Kernel I - M. Asai (JLab) 44

Instantiate user action classes

• G4VUserActionInitialization has two virtual methods.

• Build()

－Invoked at the beginning of each worker thread as well as in sequential
mode

－Use SetUserAction() method to register pointers of all user actions.

－In multithreaded mode, all user action class objects instantiated in this
method are thread-local.

• User run action instantiated in this method is for thread-local run

• BuildForMaster()

－Invoked only at the beginning of the master thread in multithreaded mode

－Use SetUserAction() method to register pointer of user run action for the
global run.

Kernel I - M. Asai (JLab) 45

Let me remind you…

• Instantiate RunManager and set initialization classes (and optional vis/GUI/etc.)

è main()

Hands-on

• Define material and geometry

è G4VUserDetectorConstruction

Material and Geometry lectures

• Select appropriate particles and processes and define production threshold(s)

è G4VUserPhysicsList

Physics lectures

• Instantiate user action classes

è G4VUserActionInitialization

Hands-on

• Define the way of primary particle generation

è G4VUserPrimaryGeneratorAction

Primary particle lecture

• Define the way to extract useful information from Geant4

è G4VUserDetectorConstruction, G4UserEventAction, G4Run, G4UserRunAction

è G4SensitiveDetector, G4VHit, G4VHitsCollection

Scoring lectures

Kernel I - M. Asai (JLab) 46

