Monte Carlo Methods for Detector Simulation

Dennis Wright
Geant4 Tutorial at Jefferson Lab
25 March 2024

based on slides from Makoto Asai (Jefferson Lab)

Outline

- History and applications of Monte Carlo methods
- Monte Carlo basics
- Examples of Monte Carlo particle transport
- Biasing - speeding thing up

History

- Fermi (1930): used random sampling to study neutron moderation
- Ulam and von Neuman (1940s): simulation for weapons development (coined the term "Monte Carlo")
- Metropolis (1948): first Monte Carlo calculations done on a computer (ENIAC)
- Berger (1963): first complete, coupled electron-photon transport code (became known as ETRAN)
- Rapid growth since the 1980s with availability of digital computers

Monte Carlo in HENP

- Detector design
- test scenarios too complex or expensive to do in lab
- assists in rapid prototyping
- no modern detector is built without simulation
- Data analysis
- simulate experimental results with and without new physics added
- reduce systematic errors
- increase confidence in results

Many Other Applications

- Astrophysics
- Molecular modeling
- Semiconductor devices
- Financial markets
- Traffic flow
- Optimization problems

Monte Carlo Basics

Monte Carlo:
 Stochastic Method for Numerical Integration

- Generate N random points \mathbf{x}_{i} in the problem space
- Calculate a "score" $f_{i}=f\left(\mathbf{x}_{i}\right)$ for the N points
- Then calculate $<f\rangle=\frac{1}{N} \sum_{i=1}^{N} f_{i}$ and $\left.<f^{2}\right\rangle=\frac{1}{N} \Sigma_{i=1}^{N} f_{i}^{2}$
- Central limit theorem: for large N, f will approach the true value \bar{f} with an error σ
- Formally:
. $p(<f>)=\frac{\exp \left[-\frac{1}{2 \sigma^{2}}(<f>-\bar{f})^{2}\right]}{\sigma \sqrt{2 \pi}}, \quad \sigma^{2}=\frac{<f^{2}>-<f>^{2}}{N-1}$

Probability Density Function (1)

- A variable is random (stochastic) if its value cannot be predicted before observing it
- Suppose x is a single continuous random variable defined over some interval
- can't predict its value, but $\operatorname{Prob}\left\{x_{i} \leq X\right\}$ represents the probability that an observed value x_{i} will be less than or equal to some specified value X
- generally, $\operatorname{Prob}\{E\}$ represents the probability of event E
- The Probability Density Function (PDF) of a single stochastic variable is a function that is
- defined on the interval $[a, b]$
- nonnegative on that interval
- normalized such that $\int_{a}^{b} f(x) d x=1, a, b$ real

Probability Density Function (2)

- $f(x)$ is a density function - it specifies probability per unit x
- $\rightarrow f(x)$ has units that are the inverse of x
- For a given $x, f(x)$ is not the probability of obtaining x
- infinitely many values x can assume
- probability of obtaining a single specific value is zero
- instead $f(x) d x$ is the probability that a random sample x_{i} will assume a value between x and $x+d x$
- $\rightarrow f(x)=\operatorname{Prob}\left\{x \leq x_{i}<x+d x\right\}$

Mean, Variance, Standard Deviation

- Two important features of a $\operatorname{PDF} f(x)$ are its mean μ and variance σ^{2}
- The mean is the expected or average value of x

$$
\langle x\rangle \equiv E(x) \equiv \mu(x) \equiv \int_{a}^{b} x f(x) d x
$$

- The variance describes the spread of the random variable x from the mean:
- $\sigma^{2} \equiv\left\langle[x-\langle x\rangle]^{2}\right\rangle=\int_{a}^{b}[x-\langle x\rangle]^{2} f(x) d x=\int_{a}^{b}\left[x^{2}-2 x\langle x\rangle+\langle x\rangle^{2}\right] f(x) d x$

$$
=\int_{a}^{b} x^{2} f(x) d x-2\langle x\rangle \int_{a}^{b} x f(x) d x+\langle x\rangle^{2} \int_{a}^{b} f(x) d x=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}
$$

- using $\int_{a}^{b} x^{2} f(x) d x=\left\langle x^{2}\right\rangle, \int_{a}^{b} x f(x) d x=\langle x\rangle$ and $\int_{a}^{b} f(x) d x=1$
- The square root of the variance is the standard deviation

Cumulative Distribution Function (CDF)

- The CDF is $F(x)=\int_{a}^{x} f\left(x^{\prime}\right) d x^{\prime}$, where f is the PDF over the interval $[a, b]$
- and has the properties:
- $F(a)=0 ., F(b)=1$.
- monotonically increasing because $f(x)$ is always nonnegative
- CDF is a direct measure of probability. $F\left(x_{i}\right)$ represents the probability that a random sample of x will assume a value between a and x_{i}, that is $\operatorname{Prob}\left\{a \leq x<x_{i}\right\}=F\left(x_{i}\right)$
. More generally, $\operatorname{Prob}\left\{x_{1} \leq x \leq x_{2}\right\}=\int_{x_{1}}^{x_{2}} f(x) d x=F\left(x_{2}\right)-F\left(x_{1}\right)$

Example 1: Flat PDF

- PDF is a rectangle: $f(x)=\frac{1}{b-a}, 0$ elsewhere , CDF: $F(x)=\int_{a}^{x} \frac{1}{b-a} d x^{\prime}=\frac{x-a}{b-a}$

Example 2: Exponential PDF

- PDF: $f(x)=\alpha e^{-\alpha x}, \operatorname{CDF}: F(x)=\int_{0}^{x} \alpha e^{-\alpha x^{\prime}} d x^{\prime}=1-e^{-\alpha x}$

Example 3: Arbitrary PDF

- A function may not have a closed-form integral, or the integral may not be invertable
- Select $\left(x_{i}, y_{i}\right)$ randomly from range and domain of function f
- When $y_{i}>f\left(x_{i}\right)$, point lies above curve, x_{i} is rejected; when $y_{i} \leq f\left(x_{i}\right), x_{i}$ is accepted
- Fraction of accepted points is equal to area below curve -> accept/reject method
- For efficiency, choose bounding curve carefully

Examples of Monte Carlo Particle Transport

Decay in Flight (1)

- An unstable particle with mean life τ has momentum p (velocity v)
- travels distance $d=v t$ before decaying
- Decay time t is a random value with probability density function
- $f(t)=\frac{1}{\tau} \exp \left(-\frac{t}{\tau}\right), t \geq 0$
- The probability that the particle decays at time t is the CDF, which is itself a random variable with uniform probability on [0,1]
- $r=F(t)=\int_{0}^{t} f(u) d u=1-\exp \left(-\frac{t}{\tau}\right)$
- Because r is uniformly distributed on $[0,1]$ the value of t can be sampled using the inverse of the CDF
- $t=F^{-1}(r)=-\tau \ln (1-r), 0 \leq r<1$

Decay in Flight (2)

- Final state of decay can be randomly sampled, too
- shoot a random number, compare to table of branching ratios
- π^{+}for example:
- $\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \quad(99.9877 \%)$
- $\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \quad\left(2.00 \times 10^{-4} \%\right)$
- $\pi^{+} \rightarrow e^{+} \nu_{e}\left(1.23 \times 10^{-4} \%\right)$
- $\pi^{+} \rightarrow e^{+} \nu_{e} \gamma \quad\left(7.39 \times 10^{-7} \%\right)$
- In rest frame of parent particle, rotate decay products in $\theta[0, \pi]$ and $\phi[0,2 \pi]$
- Then Lorentz-boost the decay products
- At least 4 random numbers needed to simulate decay in flight

Decay in Flight (3)

- Throw directions (θ, ϕ) uniformly in the solid angle
- $d \Omega=d \sin \theta d \theta d \phi=d(\cos \theta) d \phi$
- Wrong:
- $\theta=\pi r_{1}, \phi=2 \pi r_{2}$
- $0 \leq r_{1}, r_{2}<1$
- Right:
- $\theta=\cos ^{-1}\left(2 r_{1}-1\right), \phi=2 \pi r_{2}$
- $0 \leq r_{1}, r_{2}<1$

Compton Scattering (1)

- $\gamma e^{-} \rightarrow \gamma e^{-}$
- Distance l traveled before Compton scattering is a random value
- Cross section per volume: $\eta(E, \rho)=n \sigma$

- cross section per atom: $\sigma(E, z)$
- number of atoms per volume: $n=\rho N_{A} / A$ ($\rho=$ density, $N_{A}=$ Avogadro's number, $A=$ atomic mass)
- η is the probability of Compton scattering per unit length
- $\lambda(E, \rho)=\frac{1}{\eta}$ is the mean free path associated with the Compton scattering process
- The PDF: $f(l)=\eta \exp (-\eta l)=\frac{1}{\lambda} \exp \left(-\frac{l}{\lambda}\right)$
- With random number r uniformly distributed on [0,1], sample the distance: $l=-\lambda \ln (1-r)$

Compton Scattering (2)

- Ratio $\frac{l}{\lambda}$ (distance traveled to mean free path) is independent of material

$$
\text { . } n_{\lambda}=\frac{l_{1}}{\lambda_{1}}+\frac{l_{2}}{\lambda_{2}}+\frac{l_{3}}{\lambda_{3}}=\int_{0}^{\text {end }} \frac{d l}{\lambda(l)}
$$

- n_{λ} is material-independent and a random value with $\operatorname{PDF} f\left(n_{\lambda}\right)=\exp \left(-n_{\lambda}\right)$
- sample n_{λ} at the particle's origin: $n_{\lambda}=-\ln (1-r), 0 \leq r<1$
. update elapsed n_{λ} along the path of the particle: $n_{\lambda}=n_{\lambda}-\frac{l_{i}}{\lambda_{i}}$
- Compton scattering happens when $n_{\lambda}=0$

Compton Scattering (3)

- The relation between photon deflection (θ) and energy loss for Compton scattering is determined by 4-momentum conservation between photon and recoil electron

$$
\begin{gathered}
h \nu=\frac{h \nu_{0}}{1+\left(\frac{h \nu_{0}}{m_{e} c^{2}}\right)(1-\cos \theta)}, \\
E=h \nu_{0}-h \nu=m_{e} c^{2} \frac{2\left(h \nu_{0}\right)^{2} \cos ^{2} \phi}{\left(h \nu_{0}+m_{e} c^{2}\right)^{2}-\left(h \nu_{0}\right)^{2} \cos ^{2} \phi}, \\
\tan \phi=\frac{1}{1+\left(\frac{h \nu_{0}}{m_{e} c^{2}}\right)} \cot \frac{\theta}{2},
\end{gathered}
$$

- For unpolarized photons, the angular distribution is given by the Klein-Nishina formula

$$
\begin{aligned}
\frac{d \sigma_{c}^{K N}}{d \Omega}(\theta) & =r_{0}^{2} \frac{1+\cos ^{2} \theta}{2} \frac{1}{[1+h \nu(1-\cos \theta)]^{2}}\left\{1+\frac{h \nu^{2}(1-\cos \theta)^{2}}{\left(1+\cos ^{2} \theta\right)[1+h \nu(1-\cos \theta)]}\right\} \\
& =\frac{1}{2} r_{0}^{2}\left(\frac{k}{k_{0}}\right)^{2}\left(\frac{k}{k_{0}}+\frac{k_{0}}{k}-\sin ^{2} \theta\right) \quad\left(c m^{2} \text { sr }^{-1} \text { electron }^{-1}\right)
\end{aligned}
$$

$$
k_{0}=\frac{h \nu_{0}}{m_{e} c^{2}}, \quad k=\frac{h \nu}{m_{e} c^{2}}
$$

- Use accept-reject method to sample the distribution

Boosting the Simulation

Buffon's Needle

- Calculate π by dropping a needle on a lined sheet of paper and determine the probability that the needle crosses one of the lines
- Probability is directly related to the value of π

- Needle of length L will cross line if $x \leq L \sin \theta$. Assuming $L \leq D$, the probability of a line crossing is

$$
\text { . } P_{\text {cross }}=\int_{0}^{\pi} \frac{d \theta}{\pi} P_{\text {cross }}(\theta)=\int_{0}^{\pi} \frac{d \theta}{\pi} \frac{L \sin \theta}{D}=\frac{2 L}{\pi D}
$$

- Dropping a needle N times and counting N_{c}, the number of crossings, gives $P_{\text {cross }}$ and thus π

Boosting Buffon's Needle

- If the length of the needle is much smaller than the spacing of the lines, the estimate of π will take a long time
- $\pi \sim(2 L / D) *\left(N / N_{c}\right), x$ sampled uniformly over $[0, D]$

- Speed things up by sampling x over the interval $[0, L]$ instead
. probability that $0 \leq x<L$ is $\frac{L}{D / 2}$
- each successful count should be multiplied by a weight $\frac{2 L}{D}$
.then, $\pi \sim(2 L / D) * \frac{N}{N_{c}(2 L / D)}$

Biasing (Variance Reduction)

- In boosting Buffon's needle, we biased the simulation
- by sampling over a subset of the original interval that was of more interest
- applying a weight to successful events to correct for bias
- significantly speeding up the simulation
- Called variance reduction because the variance of the result for a given simulation effort is reduced (precision increased)
- Very useful for sampling events which are rare due to physics or geometry
- Can make otherwise impossible Monte Carlo problems solvable
- Care is required - use of variance reduction techniques requires skill and experience
- See talk on biasing and fast simulation for some of these techniques

Summary

- Detector simulation an essential part of nuclear and high energy physics
- Monte Carlo methods widely used outside HENP, too
- Stochastic methods used where deterministic methods don't apply
- Central limit theorem: get close to the answer with large enough statistics
- Many methods to sample functions of random variables
- integrate PDF to get CDF, invert CDF to get sampling formula
- complicated PDF -> use accept/reject method
- Simulating physical processes involves throwing lots of independent random numbers
- sample number of mean free paths, momentum, angular distributions, ...
- increase confidence in results
- Biasing can really speed things up
- care is required

