
Monte Carlo Methods for Detector Simulation  

Dennis Wright

Geant4 Tutorial at Jefferson Lab


25 March 2024  


based on slides from Makoto Asai (Jefferson Lab)


Geant4 11.2.p01



Outline

• History and applications of Monte Carlo methods


• Monte Carlo basics


• Examples of Monte Carlo particle transport


• Biasing - speeding thing up
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History 
• Fermi (1930): used random sampling to study neutron moderation


• Ulam and von Neuman (1940s): simulation for weapons development 
(coined the term “Monte Carlo”)


• Metropolis (1948): first Monte Carlo calculations done on a computer 
(ENIAC)


• Berger (1963): first complete, coupled electron-photon transport code 
(became known as ETRAN) 


• Rapid growth since the 1980s with availability of digital computers 
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Monte Carlo in HENP

• Detector design


• test scenarios too complex or expensive to do in lab


• assists in rapid prototyping


• no modern detector is built without simulation


• Data analysis


• simulate experimental results with and without new physics added


• reduce systematic errors


• increase confidence in results
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 Many Other Applications

• Astrophysics


• Molecular modeling


• Semiconductor devices 


• Financial markets


• Traffic flow


• Optimization problems 


• …
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Monte Carlo Basics  
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 Monte Carlo: 
Stochastic Method for Numerical Integration

• Generate  random points  in the problem space 


• Calculate a “score”  for the  points


• Then calculate   and 


• Central limit theorem: for large ,  will approach the true value  with an error 


• Formally:


•   ,   

N xi

fi = f(xi) N

< f > =
1
N

ΣN
i=1 fi < f2 > =

1
N

ΣN
i=1 f2

i

N f f σ

p( < f > ) =
exp[ − 1

2σ2 ( < f > − f )2 ]
σ 2π

σ2 =
< f2 > − < f >2

N − 1
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 Probability Density Function (1)
• A variable is random (stochastic) if its value cannot be predicted before observing it


• Suppose  is a single continuous random variable defined over some interval


• can’t predict its value, but  represents the probability that an observed value   will be less 
than or equal to some specified value 


• generally,  represents the probability of event 


• The Probability Density Function (PDF) of a single stochastic variable is a function that is


• defined on the interval 


• nonnegative on that interval 


• normalized such that ,   real

x

Prob{xi ≤ X} xi
X

Prob{E} E

[a, b]

∫
b

a
f(x)dx = 1 a, b
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 Probability Density Function (2)
•  is a density function - it specifies probability per unit 


•   has units that are the inverse of  


• For a given ,   is not the probability of obtaining 


• infinitely many values  can assume


• probability of obtaining a single specific value is zero 


• instead  is the probability that a random sample  will assume a value 
between  and  


•   

f(x) x

→ f(x) x

x f(x) x

x

f(x)dx xi
x x + dx

→ f(x) = Prob{x ≤ xi < x + dx}
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 Mean, Variance, Standard Deviation
• Two important features of a PDF  are its mean  and variance 


•  The mean is the expected or average value of 


•   


• The variance describes the spread of the random variable  from the mean:


•    

 


• using    ,      and  


• The square root of the variance is the standard deviation

f(x) μ σ2

x

⟨x⟩ ≡ E(x) ≡ μ(x) ≡ ∫
b

a
x f(x) dx

x

σ2 ≡ ⟨[x − ⟨x⟩]2⟩ = ∫
b

a
[x − ⟨x⟩]2 f(x) dx = ∫

b

a
[x2 − 2x⟨x⟩ + ⟨x⟩2] f(x) dx

= ∫
b

a
x2 f(x) dx − 2⟨x⟩∫

b

a
x f(x) dx + ⟨x⟩2 ∫

b

a
f(x) dx = ⟨x2⟩ − ⟨x⟩2

∫
b

a
x2 f(x) dx = ⟨x2⟩ ∫

b

a
x f(x) dx = ⟨x⟩ ∫

b

a
f(x) dx = 1
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 Cumulative Distribution Function (CDF)

• The CDF is  , where  is the PDF over the interval 


• and has the properties:


• 


• monotonically increasing because  is always nonnegative


• CDF is a direct measure of probability.  represents the probability that a random 
sample of  will assume a value between  and  , that is 


• More generally,  

F(x) = ∫
x

a
f(x′￼)dx′￼ f [a, b]

F(a) = 0., F(b) = 1.

f(x)

F(xi)
x a xi Prob{a ≤ x < xi} = F(xi)

Prob{x1 ≤ x ≤ x2} = ∫
x2

x1

f(x)dx = F(x2) − F(x1)
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 Example 1: Flat PDF

• PDF is a rectangle:   elsewhere , CDF: 


•

f(x) =
1

b − a
, 0 F(x) = ∫

x

a

1
b − a

dx′￼ =
x − a
b − a
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 Example 2: Exponential PDF

• PDF:   , CDF:  


•

f(x) = αe−αx F(x) = ∫
x

0
αe−αx′￼dx′￼ = 1 − e−αx
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 Example 3: Arbitrary PDF

• A function may not have a closed-form 
integral, or the integral may not be invertable


• Select  randomly from range and 
domain of function  


• When  , point lies above curve,  
is rejected; when  ,  is accepted


• Fraction of accepted points is equal to area 
below curve -> accept/reject method


• For efficiency, choose bounding curve 
carefully 

(xi, yi)
f

yi > f(xi) xi
yi ≤ f(xi) xi
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f(x)

y

x

(x1, y1)

Reject: y1 > f(x1)

Accept: y2 < f(x2)

(x2, y2)



Examples of Monte Carlo Particle 
Transport  
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 Decay in Flight (1)
• An unstable particle with mean life  has momentum  (velocity v)


• travels distance  before decaying


• Decay time  is a random value with probability density function 


• 


• The probability that the particle decays at time  is the CDF, which is itself a random variable with 
uniform probability on  


•  


• Because  is uniformly distributed on  the value of  can be sampled using the inverse of the CDF


•   

τ p

d = vt

t

f(t) =
1
τ

exp( −
t
τ ) , t ≥ 0

t
[0,1]

r = F(t) = ∫
t

0
f(u)du = 1 − exp( −

t
τ )

r [0,1] t

t = F−1(r) = − τ ln(1 − r) , 0 ≤ r < 1
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 Decay in Flight (2)
• Final state of decay can be randomly sampled, too


• shoot a random number, compare to table of branching ratios


•  for example:   


•  


• 


• 


• 


• …


• In rest frame of parent particle, rotate decay products in  and 


• Then Lorentz-boost the decay products 


• At least 4 random numbers needed to simulate decay in flight  

π+

π+ → μ+νμ (99.9877 %)

π+ → μ+νμγ (2.00 × 10−4 %)

π+ → e+νe (1.23 × 10−4 %)

π+ → e+νeγ (7.39 × 10−7 %)

θ [0, π] ϕ [0, 2π]

17



 Decay in Flight (3)
• Throw directions  uniformly in the 

solid angle


• 


• Wrong: 


• 


• 


• Right: 


• 


•

(θ, ϕ)

dΩ = dsinθ dθ dϕ = d(cosθ) dϕ

θ = πr1, ϕ = 2πr2

0 ≤ r1, r2 < 1

θ = cos−1(2r1 − 1), ϕ = 2πr2

0 ≤ r1, r2 < 1
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 Compton Scattering (1)
• 


• Distance  traveled before Compton scattering is a random value


• Cross section per volume:  


• cross section per atom: 


• number of atoms per volume:   (  = density, Avogadro’s number, atomic mass)


•   is the probability of Compton scattering per unit length 


•  is the mean free path associated with the Compton scattering process


• The PDF:  


• With random number  uniformly distributed on  , sample the distance:    

γe− → γe−

l

η(E, ρ) = nσ

σ(E, z)

n = ρNA/A ρ NA = A =

η

λ(E, ρ) =
1
η

f(l) = η exp(−ηl) =
1
λ

exp( −
l
λ )

r [0,1] l = − λ ln(1 − r)
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 Compton Scattering (2)

• Ratio    (distance traveled to mean free path) is independent of material


•  


•  is material-independent and a random value with PDF  


• sample  at the particle’s origin: 


• update elapsed  along the path of the particle: 


• Compton scattering happens when 

l
λ

nλ =
l1
λ1

+
l2
λ2

+
l3
λ3

= ∫
end

0

dl
λ(l)

nλ f(nλ) = exp(−nλ)

nλ nλ = − ln(1 − r) , 0 ≤ r < 1

nλ nλ = nλ −
li
λi

nλ = 0
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 Compton Scattering (3)
• The relation between photon deflection (  ) and energy loss for Compton scattering is 

determined by 4-momentum conservation between photon and recoil electron


• For unpolarized photons, the angular distribution is given by the Klein-Nishina formula


• Use accept-reject method to sample the distribution 

θ
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Boosting the Simulation  
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 Buffon’s Needle
•Calculate  by dropping a needle on a lined sheet of paper and determine the probability that 
the needle crosses one of the lines


•Probability is directly related to the value of  


•Needle of length  will cross line if   .   Assuming  , the probability of a line 
crossing is 


•    


•Dropping a needle  times and counting  , the number of crossings, gives  and thus  


π

π

L x ≤ L sinθ L ≤ D

Pcross = ∫
π

0

dθ
π

Pcross(θ) = ∫
π

0

dθ
π

L sinθ
D

=
2L
πD

N Nc Pcross π
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 Boosting Buffon’s Needle
• If the length of the needle is much smaller than the spacing of the lines, the estimate of  will 
take a long time


•    ,  sampled uniformly over 


•Speed things up by sampling  over the interval  instead


•probability that  is 


•each successful count should be multiplied by a weight 


• then, 


π

π ∼ (2L/D) * (N/Nc) x [0, D]

x [0, L]

0 ≤ x < L
L

D/2
2L
D

π ∼ (2L/D) *
N

Nc(2L/D)
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 Biasing (Variance Reduction)
• In boosting Buffon’s needle, we biased the simulation


• by sampling over a subset of the original interval that was of more interest 


• applying a weight to successful events to correct for bias


• significantly speeding up the simulation


• Called variance reduction because the variance of the result for a given simulation effort is 
reduced (precision increased)


• Very useful for sampling events which are rare due to physics or geometry


• Can make otherwise impossible Monte Carlo problems solvable


• Care is required - use of variance reduction techniques requires skill and experience


• See talk on biasing and fast simulation for some of these techniques
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Summary
• Detector simulation an essential part of nuclear and high energy physics


• Monte Carlo methods widely used outside HENP, too


• Stochastic methods used where deterministic methods don’t apply


• Central limit theorem: get close to the answer with large enough statistics


• Many methods to sample functions of random variables


• integrate PDF to get CDF, invert CDF to get sampling formula


• complicated PDF -> use accept/reject method


• Simulating physical processes involves throwing lots of independent random numbers


• sample number of mean free paths, momentum, angular distributions, … 


• increase confidence in results


• Biasing can really speed things up 


• care is required
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