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Software for Nuclear Dynamics

  Algorithms for  HPC and Quantum Computing: 
     

Case Studies:  
Lepton-Nucleus (Linear Response):  
                                 Quantum Few- and Many-Body and 
                                 Classical/Semi-classical 
Dense Neutrino Environments (SN & NS Mergers) 
                                 Mean-Field/ Many-Body/ Random Matrix



Nuclear Dynamics
• Substantial Progress to date on


• Low-Energy Scattering and Reactions (R-matrix, …)  
Similar to Ground State Methods - Implementing Boundary Conditions


• Few Degrees of Freedom


• Inclusive Quasi-Elastic Scattering (Linear Response) 
High momentum transfer (compared to Fermi momentum) and 
Energy   Short distances and times (high momenta)


• Leaves a great deal of important physics:


• Strong Interactions, Moderate energies, 


• Beyond linear response, lower momenta and longer times


• thermalization/equilibration


• quantum vs. (semi) classical

↔



quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"
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where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+
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where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to
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where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is
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where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and
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In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.

191Benhar, Day, and Sick: Inclusive quasielastic electron-nucleus …

Rev. Mod. Phys., Vol. 80, No. 1, January–March 2008

Inclusive Lepton Nucleus Scattering: 
2 Point function:


<0| J(q) exp [-iHt] J(q) | 0>


Full quantum treatment:

[Nuclear Scale * q / (  )]3A


~ [ (10 fm) 3 fm-1 / (  )]3A


~ 5 (3A) =  5 120


Early use case for Quantum Computing advantage!


2π
2π

• At moderate to high momentum transfer: short distances / Times

• Spectral Function (single or two-particle removal)

• Short-time approximation (w/ NN scattering dynamics) 

• Requires only few nucleon quantum degrees of freedom


Semi-classical approximation used for exclusive channels

Tests of Accuracy, where is classical quantum transition


Continuum of difficulty from inclusive high energy 

to exclusive modest energy




Strongly-Entangled Dense Neutrinos 
Rapid equilibration: similar to hard cartons in QCD medium

Hν−ν =
2GFρν

N ∑
i<j

(1 − ̂ki ⋅ ̂kj) σi ⋅ σj

Initial state: product of single neutrino states

w/ randomness in flavors directions, momenta

Quantum entanglement develops very quickly

Rapid Equilibration: 

phases from snapshot at 10 different times
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FIG. 5. Evolution of h�̂3i for neutrino i = 1 compared to
the prediction utilizing the grand-canonical partition function
(black dotted line) at early time. Inset: h�̂3i as a function of
time for every neutrino on the entire considered time domain.

body flavor content with a timescale which appears insen-
sitive to the total number of spins. The equilibration we
observe in flavor content is subsequent to a development
of one-body entanglement on a timescale which is sim-
ilarly insensitive to N . Our numerical observations are
consistent with a time-to-equilibrium which scales simply
as O(µ�1). In Fig. 6 we show the timescales we extracted
for the equilibration of these quantities for a range of sys-
tem sizes. Because our computational method retains all
amplitudes, we are computationally limited in the system
sizes N we can investigate.

For states that are close to polarized product states
in the ~e3 direction, we can argue that the time-scale
to equilibrium cannot scale to zero as N � 1. In ap-
pendix A, we calculate the first two terms in the Taylor
series for the time evolution of h�̂3,i(t)i, and find that
the expectation value for such states the linear term van-
ishes and the quadratic term scales as µ2/N . We ex-
pect such a Taylor series to have a radius of convergence
scaling as µ�1. Noting h�̂3,i(t = 0)i ⇡ ±1, then trun-
cating the series at quadratic order and estimating when
h�̂3,i(t)i ⇡ 2hĴ3i/N ⌧ 1, we would conclude t ⇠

p
N/µ.

However, such a time-scale is outside the expected region
of convergence for our series, making such a conclusion
not self-consistent. We can, though, conclude that t ! 0
as N � 1 is impossible: the smallness of the quadratic
term, and the suppression of higher orders as t ! 0,
would not allow a self-consistent solution to the equilib-
rium condition in arbitrarily small neighborhoods of the
origin. We intend to follow up these observations with
investigations of these timescales both analytically and
with computational methods which may allow substan-

FIG. 6. Times for which: the average time (TS , indicated by
black diamonds) the one-body entropies reach 95% of their
maximum; the Loschmidt echo (TL, black squares) reaches
its first local minima; and the average time (TP3 , indicated
by black circles) the the one-body h�̂3i reaches its first turning
point.

tially larger system sizes, such as tensor network meth-
ods.

C. Path integral description of time evolution and
equilibrium distributions

In the results presented in the previous section, it is
striking that at late times each individual neutrino fla-
vor expectation value is approximately given by h�̂3,ii ⇡

2hĴ3i/N . We observe this approximate flavor isotropy
even when there is substantial correlation between the
initial flavor content and momenta of the neutrinos (as
in the initial split configuration of Fig. 4). This is behav-
ior we have observed across a variety of system sizes, and
initial correlations between flavor and momenta. The to-
tal hĴ3i is of course conserved by the Hamiltonian, but
there is no a priori reason to expect all the spins to reach
the same equilibrium value. To clarify this point and
to define the equilibrium values for general systems of
neutrinos (and both neutrinos and anti-neutrinos), we
consider the time evolution in a path integral approach.

The time-evolved expectation value of an operator ex-
pressed as an expansion of overlaps with the initial state
for a system described by the Gaussian Orthogonal En-
semble produces random phases in the o↵-diagonal ele-
ments that would normally be present in Eq. 6. Rewrit-
ing the expectation value as a sum over product states
of ⌫e and ⌫⌧ spins |ni the amplitude of the state in state

Spin 1

 leads to conservation of product 

of neutrino and anti-neutrino densities


 (2 constraints)


νeν̄e ↔ νμν̄μ

ρeρē = ρμρμ̄ = ρτρτ̄

• Equilibration of quantum many-body fast neutrino flavor oscillations

JD Martin, D Neill, A Roggero, H Duan, J Carlson

PRD 108 (12), 1230109  202

• Many-body neutrino flavor entanglement in a simple dynamic model

JD Martin, A Roggero, H Duan, J Carlson  arXiv preprint arXiv:2301.07049102023

• Neutrino many-body flavor evolution: the full Hamiltonian

V Cirigliano, S Sen, Y Yamauchi arXiv preprint arXiv:2404.16690




Quantum Dynamics in Nuclear Physics is an Extremely Important Field 
Fission and Fusion 
Lepton Scattering 
Dense Neutrinos 

QCD: ….

Rapidly Evolving Algorithms/ Hardware: 
Mean field vs. QMB 

Quantum vs. (semi)Classical 
Number of Degrees of Freedom 

New insights/ new software is key! 
High Performance Computing 

Quantum Computing 
New algorithms for new capabilities across fields 


