

ARE INFRASTRUCTURE

IQUS - The InQubator for Quantum Simulation

The Matter-Antimatter Asymmetry

Martin Savage University of Washington

Thomas Jefferson National Accelerator Facility, June 20-22, 2024

Software Infrastructure for Advanced Nuclear Physics Computing

Astrophysical Environments

Collisions and Reactions

IBM Defines the The Utility Scale

IBM Quantum

Select Recent Advances in Quantum Computing

Cold-Atom arrays with **Optical Tweezers**

4 Logical Qubits 32-qubit H2-1 trapped ions (Quantinuum-Microsoft)

FIG. 1. Level scheme of the ${}^{40}Ca^+$ ion.

Bidirectional Teleportation Protocol in Quantur June 2018 - International Journal of Theoretical ... 57(4)

QuS InQubator for Quantum Simulation

Workshops Research Visitors

19 views + 2 months ago

190 views • 1 month ago

56 views • 4 weeks ago

37 views • 3 weeks ago

INSTITUTE for NUCLEAR THEORY

Workshops

At the Interface of Quantum Sensors and Quantum Simulations (22-3b)

Organizers: Doug Beck (UIUC), Natalie Klco (Caltech), Crystal Noel (UMD) and Joel Ullom (NIST)

Thermalization, from Cold Atoms to **Hot Quantum Chromodynamics**

Pulses, Qudits and Quantum

Simulations

IQuS - Research Directions

Access to Quantum Computers through OLCF+QSC essential Access to HPC through NERSC+DOE+OSG+AWS+UW essential Generally, software relies on Technology company stacks, plus NP``on top"

Lattice Gauge Theories IBM+Quantinuum (OLCF)

[AWS - Quera]

Neutrinos (QSC+OLCF)

Topological Phases and dynamics (lonQ+MS)

Hamiltonian Learning of EFT (IBM)

Transport SU(2) LGT IBM+Quantinuum (OLCF)

Encoding Systems in Multi-Hilbert Space, Hybrid Devices, **Embedded in Large-Scale HPC**

Map scalar, fermion and vector systems

Human-intensive and HPC-intensive

Optimize for target observables - Physics Aware

Scalable Circuits for Preparing Ground States on Digital Quantum Computers: The Schwinger Model Vacuum on ⁻ Roland C. Farrell, Marc Illa, Anthony N. Ciavarella, Martin J. Savage. e-Print: 2308.04481 [quant-ph]

Quantum Simulations of Hadron Dynamics in the Schwinger Model using 112 Qubits Roland C. Farrell, Marc Illa, Anthony N. Ciavarella, Martin J. Savage. e-Print: 2401.08044 [quant-ph]

IBM, OLCF, QSC, NERSC, OSG, Local

Simulating the Schwinger Model using more than 100 qubits and One Trillion CNOT Gates

Trotter, Twirling, DD, ODR, SPAM, Transpilation... qiskit, Mathematica, python, cirq, Julia, ... **ADAPT-VQE**, strong-coupling, HPC-optimizations

Roland Farrell, Marc Illa, Anthony Ciavarella, MJS

Confinement and Scalable Circuits Physics Awareness

$$\hat{H} = \hat{H}_m + \hat{H}_{kin} + \hat{H}_{el} = \frac{m}{2} \sum_{j=0}^{2L-1} \left[(-1)^j \hat{Z}_j + \hat{I} \right] + \frac{1}{2} \sum_{j=0}^{2L-2} \left(\hat{\sigma}_j^+ \hat{\sigma}_{j+1}^- + \text{h.c.} \right) + \text{Local} \qquad \text{Nearest Neighbor}$$

Classical Optimization

ADAPT-VQE - Sophia Economou et al.

Quantum Implementation

Non-local

Checking Truncations (HPC)

Decoherence Renormalization (DR) and Operator DR - a disruptive algorithm advance

Workflow

"Physics circuit"

The device is approaching a classical, depolarized set of qubits as time goes by.

Mitigation methods are essential and effective

Production using IBM's Heron Processor Torino

Production highlights

- 14K CNOTs for 14 Trotter steps
- 1.05 Trillion total CNOTs applied
- 154 Million shots
- 112 qubits x 370 depth
- 1 full week of dedicated running

Complex systems with hierarchy of length scales, dynamics simulations challenging, All-to-all connectivity

A Case Study

Transport Properties A Case Study **Shear Viscosity in 2+1D SU(2)**

IBM, Quantinuum, OLCF, Local

2307.00045 **Berndt Mueller and Xiajun Yao**

Francesco Turro, Anthony Ciavarella and Xiajun Yao

Future : Source/Sink optimizations

QITE, Trotter, Twirling, ODR, SPAM, ... qiskit, Mathematica, python, ...

Quantum algorithm for G_r^{xy}

On 4 × 4 lattice w/ $j_{max} = 0.5$

2402.04221

At the Quantum Limit, same as liquid created in heavy-ion collisions

Quantities and Numerical Techniques In Use

Time evolution	<pre>< 24 qubits: exact ex multiplication (EXPOI</pre>
	> 24 qubits: tensor-n
Circuit simulation/ verification	< 40 qubits: (noiseles < 30 qubits: (noisy) d > 30-40 qubits: (noise
Spectrum analysis	< 16 qubits: full spec
	< 24 qubits: exact lov > 24 qubits: approxir

- (ponentiation of (sparse) matrices via matrix-vector KIT via Krylov methods,...)
- etwork approximation (TDVP,...)
- ss) state-vector simulators (multi-node)
- lensity-matrix simulators (multi-node)
- eless) tensor-network approximation (TEBD,...)
- ctrum for thermalization studies (exact diagonalization)
- w-energy spectrum (ARPACK,...)
- mate low-energy spectrum (DMRG,...)

Thanks to Marc Illa

A Case Study

Cold-Atom Systems

AWS-Quera-IQuS collaboration: Led to a classical method to solve a sign problem

2+1D

Bloqade - extensive tunings using device parameters/uncertainties

 $S = \frac{1}{2a} \int dt \, dx \, \partial_{\mu} \vec{\phi}(x,t) \cdot \partial^{\mu} \vec{\phi}(x,t)$

 $\hat{H}^{D} = J_{x} \sum \vec{S}_{x,y} \cdot \vec{S}_{x+1,y} + J_{y} \sum \vec{S}_{x,y} \cdot \vec{S}_{x,y+1}$

Months of 4K core HPC jobs for tuning parameters

Maximum depth: Maximum CNOT Maximum # gate Maximum # CNC

 (η)

E 0.100

0.010

0.001

 $\langle \mathcal{A} \rangle_{\mathrm{mc}}(E) \delta_{\alpha\beta} + e^{-S(E)/2} f_{\mathcal{A}}(E,\omega) R_{\alpha\beta}$

ALL eigenstates of Hamiltonian $10^4 \times 10^4$ and compute matrix elements

Using python scipy eigen module (1 node) it takes **20 hours**

For matrix exponentiation, use Expokit algorithm, efficient for sparse matrices (available only with single-node execution therefore limited by memory on the node)

$2^{24} \approx 10^7 \times 10$

nosed of 112 aubits	A single NVIDIA RTX A5000, total
	GPU hours (via Open Science Gri
: 574	Cluster)
depth: 370	Used NVIDIA cuQuantum tensor-r
s: 32,016	simulator for comparison with res
OT gates: 13,858	from quantum computer (available single/multi-GPU execution)

No large-scale qudit circuit simulators available, custom code using google cirq as base (single-node), total of **36** days on Hyak (UW)

General Comments

While the algorithms and error mitigation strategies are being integrated (by tech companies) into their software stacks in a timely way, NP problems have attributes that require specialized algorithms and optimizations.

Error mitigation is largely tech-company enabled, e.g. IBM. Error-correction is nascent in NP, with a handful of examples in gauge theories (Gauss's law checks etc)

Digital systems now >30 qubits (all-to-all), and 112 qubits (nearest-neighbor) is state-of-the-art

Cold-atom systems >1K atoms, 2D arrangement, two-atom entangling operations (all-to-all)

Need <Pauli strings> , exponentially large number - requires MCMC, ...

Current situation is ``patchwork'' and now requires increased organization for the future

Simulators Required

Digital qubit, qudit simulators at scale - 44-qubit simulation cost \$\$\$\$ Associated HPC resource allocations - synchronize with quantum device access Quantum data analysis, error mitigation, etc - moving to larger data Requires flexible connectivity and noise models

Developed a single-node qudit simulator - tested performance of another that sits on top of qubit simulator at scale.

Cold-atom simulators - currently limited to about 20 atoms, target >1K but >10K better Requires flexibility for rapidly changing device attributes/capabilities, help design next-gen.

InQubator for Quantum Simulation **IQUS**

Making progress in developing quantum simulations of important problems.

- techniques have utility in other areas.

neutrinos, hot-dense matter - looking toward QAs

Specialized algorithms are enabling progress, broad interest

Progress requires enhanced flexible simulation capabilities - for available hardware

— both code and algorithm development, and significant HPC resources : organization/structure

by access.

- IQuS workshops have proven to be effective in QIST-NP integration ... leverages INT spacetime
- Expected future impacts for non-equilibrium dynamics in nuclei and reactions, lattice QCD,

Require enhanced access to quantum computers - all architectures. Progress has been spurred

