Computing for Neutrino Physics

Jason Brodsky, LLNL

Thanks: Jason Detwiler, UW

SANPC, June 20, 2024

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Experimental neutrino physics in NP

- Subset of Fundamental Symmetries
- Lots of neutrino physics in HEP, too
- Neutrinoless double beta decay
- Neutrino absolute mass
- Sterile neutrino searches
- Neutrino-nucleus inelastic scattering
- Some non-neutrino FS has similar needs, some is quite different

Two main concepts for neutrino computing

- Focused on hardware
- Lots of overlaps with HEP dark matter

Neutrino experiment computing

- Highly bespoke detectors
 - Limited opportunities to use commonly available hardware
 - Customized sensors with niche userbase
 - Often a radically new detection scheme
- Much less reliance on nuclear physics modelling
 - Easily possible to run an experiment and analyze data with little reference to theory
 - Theory is important to justify experiments and interpret final results

<u>BeEST</u>

Neutrino experiment computing

- Processing raw data demands sophistication
 - Little on-hardware data reduction
 - Raw (or close) data analysis is often the meat of the problem
- Rare event simulations
 - Large volume of simulations makes systematics hard to model
 - Computing that aids design needs to consider many hardware details
 - Originality of hardware makes precision simulation challenging high likelihood of simulation/experiment discrepancies

Examples of hardware-focused computing

Signal Background - 0.07 0.10 0.06 0.05 0.08 - 0.04 - 0.06 - 0.03 - 0.04 - 0.02 - 0.02 - 0.01 0.00 0.00

<u>J. Renner</u> NEXT Experiment

<u>Anderson et al., 2022</u>

S. Schwartz

Computing needs for bespoke detectors

- Small, modular utilities
 - Not every piece of software is fated to be reusable
 - Large toolkits that cover a variety of needs of a single experiment are rarely reusable
 - Small utilities that solve narrow problems are great
 - Good papers explaining a method are extremely valuable

Computing needs for hardware focus

- "Medium" data needs to be portable
 - E.g. nEXO ~100 TB/year, LEGEND-1000 1 PB/year
 - Junior scientists need access to unreduced data to do exciting work
 - Portable: efficiency is important, even given massive computing resources
 - "Only works on the cluster" craters collaboration productivity
 - How fast can you do something interesting to 5 GB of data?
 - Combining efficiency with the algorithms people actually want to write
 - Driving shift towards fast python, Julia, etc.
 - Echoed in work on HEP side, e.g. IRIS-HEP

Computing during neutrino experiment design

- Neutrino experiments are tightly constrained by challenging engineering
- Design moves in leaps, not along a continuum
- A leap in design requires extreme flexibility from simulations and analysis
- ML-powered design searches not interesting without a continuum
- ML-powered flexibility extremely valuable: how quickly can we evaluate a qualitatively new design?

Machine learning

- Necessarily more personal, since no long-standing consensus
- What is important to NP neutrinos AND underdeveloped
- Hardware & raw signals analysis
 - Denoising, dimensionality reduction
 - Unsupervised, as much as possible
 - Differentiable simulations
- Simulations-based inference
 - Learning likelihood functions from simulations
 - Robust handling of systematics without excessive simulations
 - Useful for reconstruction too
 - Not generative ML proxies for simulations: too hard to validate for rare events

The training program is robust

- Excellent postdoctoral candidates with strong software skills are being trained
- Standout candidates have engaged with *recent* ML research
- Onramp to basic ML proficiency seems in good shape
- More room for improvement in training advanced skills?

At-a-Glance		
1	45	4
ACTIVE JOBS	TOTAL CANDIDATES	NEW CANDIDATES

My posting dashboard

Neutrino experiments in NP look like HEP experiments

Which one is NP?

Which one is NP?

NP neutrino physics and dark matter

• Compare:

- nEXO to liquid noble WIMP detectors
- LEGEND to solid-state WIMP detectors
- Project 8 / BeEST / SALER to ADMX
- Hardware, software, and physics are similar
- Collaborations often literally overlap

NP neutrinos vs HEP neutrinos

- Often less overlap in computing than you'd think
- Accelerator & atmospheric neutrinos at quite different energy scales leads to different computing challenges (e.g. track reconstruction into reduced quantities)
- Reactor neutrinos closer
- Inelastic neutrino-nucleus scattering in COHERENT

Communities coming together

- <u>DANCE</u>, feeding into <u>Snowmass</u>
- <u>Neutrino Physics and Machine Learning</u>

Top Pragmatic recommendations

- Opportunities to advance small, modular data analysis utilities
- A home for computing research that crosses the NP/HEP divide
- ML priority should be cutting-edge; on-ramp has never been easier