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Experimental neutrino physics in NP

* Subset of Fundamental Symmetries
* Lots of neutrino physics in HEP, too

* Neutrinoless double beta decay

* Neutrino absolute mass

* Sterile neutrino searches

* Neutrino-nucleus inelastic scattering

* Some non-neutrino FS has similar needs, some is quite different



Two main concepts for neutrino computing

* Focused on hardware
* Lots of overlaps with HEP dark matter



Neutrino experiment computing

* Highly bespoke detectors
* Limited opportunities to use commonly available hardware
* Customized sensors with niche userbase
* Often aradically new detection scheme

* Much less reliance on nuclear physics modelling

* Easily possible to run an experiment and analyze data with little reference
to theory

* Theory is important to justify experiments and interpret final results


https://beest.mines.edu/scientists/
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Neutrino experiment computing
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* Processing raw data demands sophistication

[\®]
o

* Little on-hardware data reduction
 Raw (or close) data analysis is often the meat of the
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* Large volume of simulations makes systematics hard to
model

« Computing that aids design needs to consider many
hardware details

* Originality of hardware makes precision simulation
challenging high likelihood of simulation/experiment
discrepancies



Examples of hardware-focused computing
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https://doi.org/10.1140/epjc/s10052-022-11000-w
https://jerenner.github.io/next-dnn-topology/
https://indico.slac.stanford.edu/event/8028/contributions/6840/

Computing needs for bespoke detectors

 Small, modular utilities
* Not every piece of software is fated to be reusable

* Large toolkits that cover a variety of needs of a single experiment are
rarely reusable

 Small utilities that solve narrow problems are great
* Good papers explaining a method are extremely valuable



Computing needs for hardware focus

* “Medium” data needs to be portable
* E.g. nEXO ~100 TB/year, LEGEND-1000 1 PB/year
* Junior scientists need access to unreduced data to do exciting work

Portable: efficiency is important, even given massive computing
resources

* “Only works on the cluster” craters collaboration productivity
* How fast can you do something interesting to 5 GB of data?

Combining efficiency with the algorithms people actually want to write
Driving shift towards fast python, Julia, etc.

Echoed in work on HEP side, e.g. IRIS-HEP 9 N u m ba
ﬁproot



Computing during neutrino experiment design

* Neutrino experiments are tightly constrained by challenging
engineering

* Design moves in leaps, not along a continuum

* Aleap in design requires extreme flexibility from simulations and
analysis

* ML-powered design searches not interesting without a continuum

* ML-powered flexibility extremely valuable: how quickly can we
evaluate a qualitatively new design?



Machine learning

* Necessarily more personal, since no long-standing consensus
* What is important to NP neutrinos AND underdeveloped

* Hardware & raw signals analysis
* Denoising, dimensionality reduction
* Unsupervised, as much as possible
* Differentiable simulations

e Simulations-based inference
* Learning likelihood functions from simulations
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* Robust handling of systematics without excessive simulations

e Useful for reconstruction too

* Not generative ML proxies for simulations: too hard to validate for rare events



The training program is robust

* Excellent postdoctoral candidates with strong software skills are
being trained

* Standout candidates have engaged with recent ML research
* Onramp to basic ML proficiency seems in good shape
* More room for improvement in training advanced skills?

At-a-Glance

1 45 4

My posting dashboard


https://jobs.smartrecruiters.com/LLNL/3743990004534266-neutrinoless-double-beta-decay-postdoctoral-researcher

Neutrino experiments in NP look like HEP
experiments



Which one is NP?
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Which one is NP?
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NP neutrino physics and dark matter

e Compare:
* nEXO to liquid noble WIMP detectors
* LEGEND to solid-state WIMP detectors
* Project 8/ BeEST /SALER to ADMX

* Hardware, software, and physics are similar
* Collaborations often literally overlap



NP neutrinos vs HEP neutrinos

* Often less overlap in computing than you’d think

* Accelerator & atmospheric neutrinos at quite different energy
scales leads to different computing challenges (e.g. track
reconstruction into reduced quantities)

 Reactor neutrinos closer
* Inelastic neutrino-nucleus scattering in COHERENT



Communities coming together

* DANCE, feeding into Snowmass

* Neutrino Physics and Machine Learning



https://dance.rice.edu/
https://arxiv.org/pdf/2203.08338
https://indico.phys.ethz.ch/event/113/

Top Pragmatic recommendations

* Opportunities to advance small, modular data analysis utilities
* Ahome for computing research that crosses the NP/HEP divide
* ML priority should be cutting-edge; on-ramp has never been easier
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