
Exp - Collider
(RHIC, LHC, EIC)

SANPC2024 Workshop

Clear Requirements and Goals

Robust Architecture

Effective Project Management

Strong [Coding] Practices

Continuous Integration and Continuous Deployment (CI/CD)

Documentation

Security (important for GRID comp.)

Performance Optimization

User-Centric Design

Collaboration and Communication

Adaptability and Flexibility

Sustainable Development

Key topics

● Sustainability of the software development and maintenance model
○ Core team - contributor in the cloud paradigm
○ Dependencies - in and out of control of the project/experiment

● Role of CS/IT divisions
○ “IT as a service” vs “IT research focus”
○ Spotlight on host labs

● Role of funding agencies
○ Distributed computing - distributed software development vs. core team funding
○ Accounting - direct vs. indirect funding for software development

● Development and retention of the workforce
○ Key drivers for computing scientists (often physicist-turned-cs)
○ Career development - paths

● New directions - new methods
○ Novel tools enabled by ML - applications to optimizations of detector simulations and data analysis

● Lessons for the future
○ Recap where to improve - clarity in spending and efficiency of $
○ Community engagement, cross-talk, common cross-projects (including theory-experiment)

● Data pipeline - a generalization based on ALICE example
○ Detector FEE (computing starts already here!)
○ First level data reduction (e.g., ZS)
○ Local event reconstruction (hit/cluster level)
○ Global event reconstruction (track level)
○ Additional data reduction (if needed/lossy)
○ PID (particle hypothesis level)
○ Storage (different formats/skims) - improved reco/calib iterations - physics analysis

● Important improvements/variation: continuous/streaming readout, iterative approach
to event reconstruction

Ti
m

e
D

ec
re

as
in

g
si

ze

“Typical” collider experiment - computing infrastructure
“Typical” ⇔ largely common approaches

‘Example’ - ALICE

● Collider experiment - software project(s)
● Collaborations O(100) - O(1k)

○ Efficient management structure essential (computing a separate sector within
these structures)

● Example: Sheer lines of code (ALICE example / no deps)
○ Online-Offline (reconstruction): > 1.1M lines
○ O2 Physics (data analysis): > 650k lines

● Workforce - example:
○ Core team of O(10) (may include IT FTE)
○ Contributors distributed @ various expertise levels >100
○ Physics analysis contributors (global) O(100)

● Self-built tools for distribution / installation / running
○ Scripts / tools (e.g., aliBuild), conternerization

● Use of mainstream development tools (e.g., GitHub/Lab)
● Number of common tools used but often different approaches determine different

direction (also historical aspects play a role)

Not discussed: distributed
offline computing - GRID; tier
structure; etc

Offline-online integration:
same algos online and offline

“Typical” collider experiment - computing infrastructure
Main challenges - broad strokes:

● Most steps alignment and calibration sensitive
○ Needs a dedicated team / skilled / in training WF

● Lossy vs. lossless compression
○ Needs experts (also knowledge of the detector)
○ No rapid changes, needs R&D, maintenance

● Time to data analysis
○ Could be O(Year) - EIC aim: 2-3 weeks ⇔ improved automation
○ Scales with complexity of the detector system
○ Efficient ops need dedicated team of calibration experts

● MC generation / simulations
○ Logistics, expert team, monitoring

● Reprocessing vs. resources vs. new data
○ Logistics, storage, CPU (reuse GPU)

● Management of online and offline software
○ Strong integration of online-offline processing (same algos; aim for

seamless DAQ-to-analysis workflow)
○ Needs skilled FTE operations
○ Knowledge of the dependencies
○ R&D - continuous evolution / adaptation to hardware
○ Packaging (script, conteneralization, OS compatibility etc)

“Typical” ⇔ largely common approaches

‘Example’ - ALICE

“Typical” collider experiment - computing infrastructure

Main challenges - broad strokes

● Data pipeline
○ Detector FEE
○ First level data reduction (e.g., ZS)
○ Local event reconstruction (hit/cluster level)
○ Global event reconstruction (track level)
○ Additional data reduction (if needed/lossy)
○ PID (particle hypothesis level)
○ Storage

Most steps detector alignment and calibration sensitive

Lossy vs. lossless compression

Time to data analysis (could be O(Year))

Reprocessing vs. resources vs. new data

“Typical” ⇔ largely common approaches
Ti

m
e

D
ec

re
as

in
g

si
ze

Small revolution: continuous readout (aka streaming)
=> new data challenge and new software paradigm

Setting up the stage: ‘Example’ - ALICE

Not discussed:
distributed offline
computing - GRID;
tier structure; etc

Sustainability of software development and maintenance
● Collider experiments are multi-year/decade long enterprises

○ Need for sustained support of overall computing infrastructure (see WLCG, MoUs FAs-CERN etc)
○ Even after the experiments mission complete need for data preservation plans & resources
○ Typically driven/covered by the host lab(s) - especially after collaboration dissolved

● Needs a continuous influx of juniors
○ Rotation, training of new experts - competition with industry…

● Requires clear career progression for physicists-turned-CS
○ Important for retention of skilled FTE / know-how - vital need
○ Can be critical especially for online systems software development/maintenance
○ Common standards / best practices enable flow of juniors between experiments

● Concern: reliance of single-point-of-know-how (non-replaceable experts)
○ Can be overbearing for the personnel
○ Needs long term solutions / planning rather than ad-hoc injection of funds

● Dependencies vs. re-inventing the wheel
○ Obvious but important: experiment dedicated software relies on GNU/GPL external packages, OS and its evolution ⇔

there is an assumption that these will be always available and will evolve favorably
○ Important aspect: a critical decision - do NOT re-invent software that already exists (easy for generic/well designed pgks)

● Building software for Tomorrow’s experiment with Today’s tools inadequate
○ ePIC in ideal situation
○ Ongoing experiments: incorporation of “new and better” requires study and evaluations - in time critical periods this is

often impossible / dropped in favor of custom quick fixes
○ Essential to value basic work on software development as early as possible - in particular: strong positive long-term net

benefit for the experiment when building up the expertise within juniors

Organizational aspects - Role of CS/IT departments
● CS/IT departments carry a reservoir of expertise / knowledge / applications
● CS/IT departments carry a capacity for long-term career development

○ Retention of talent (otherwise too heavy-$ on experiments)
● Good alternative to industry for continuation of critical expertise

○ Still attracts science enthusiasts (compensation competitiveness regional)
● R&D towards advancement of CS not always aligned with experiments priorities / needs

○ Unexercised opportunities (@host lab IT departments: disconnect with the primary [science] mission)
○ Examples of failed “frameworks of everything” vs. success of ROOT (experiment supported; only later to

evolve into / accepted as the CERN supported team - community has chosen functionality over
complexity/abstraction)

○ Good examples of experiment driven frameworks ⇔ success because of the strong line to operations
○ Typically: experiment internal physicists-turned-CS take the main dev. tasks but also those that need less

domain knowledge (input from CS needed but not always possible [time/cost issue])
● New directions (CERN ~2022)

○ “IT as a service” - understanding the main task is the support of the science program
○ Embedding of IT/CS FTE into experiment (months-years)
○ Targeted hires recognizing exp. needs - often addressing common needs
○ Special advisory committee - good cross-division/experiment cross-talk with IT:

■ Selected experts from experiments, accelerator, IT meet regularly / discuss / recommend to mgmt

Development and retention of workforce
● Likely one of the key issue: definition of clear career paths / progression for

physicist-CS crossover
● Experiments rely on a dedicated “core teams”

○ Unique expertise in key areas such as alignment, calibration, GPU processing, software (from
within and outside), MC simulation packages, distributed computing (GRID) … with intimate
knowledge of the experiment, physics program, and urgency

○ First motivation is to support science - compensation @ the 2nd place .. but reality forces
● Support for core teams essential

○ Workforce: support for education and development
○ Stability: Good developments take time (quick fixes come haunting sooner or later)

● Generic question: How to fund projects/experiments allowing for…
○ Good cycle / overlap of junior and senior software devs.
○ Continuous R&D, testing new solutions, adaptation to new hardware
○ Enabling cross-collaborative efforts on common toolkits / approaches

Funding / Role of funding agencies
● Funding of [host;facility] labs as an efficient way to provide software dev. support

○ This includes infrastructure - local (concentrated) mostly most efficient
○ Including contributions to computing (as opposed to soft development) on par with groups participation (e.g.

participation in CERN experiments requires computing or $ contribution per M&O-A member - FA level MoUs)
○ This includes resources for data preservation
○ Embedding of CS into university research group beneficial to the overall projects

● Need for allocating/allowing for additional funding within the projects and experiments to
tackle software development specific tasks - including hiring of CS/IT within exp. projects

○ Currently difficult to hire skilled CS to a specific task within collaboration
○ This is not always practical - funding necessity for domain expertise still needed (e.g. data and analysis

preservation is a requires domain knowledge - not solely tools and workflows)
● Clarity on innovation vs. applications of innovation(s)

○ Support for development of applications important (as opposed to advancement of CS) - especially true for
ML-area

○ Even if innovative solution at hand still significant effort / time needed for production quality
● Enabling cross-talk, cross-pollination

○ Many elements/methods of the toolkits are common between experiments
○ Enable common/joint multi-exp software oriented projects (?)
○ Enable theory-experiment collaborations (what’s the plan?) on software development

New directions

● ML - Cannot afford to ignore ML and its rapid growth
○ Efficient detector response simulations
○ Unbinned observable analysis
○ Improved inference - wholistic approach to event reconstruction and data analysis

● Theory-experiment cross-developments
○ Experimentalists good at efficient framework build up - know what’s practical and useful
○ New culture - new paradigm of physics extraction from data (e.g. Bayesian analysis)

● Software-hardware infrastructure optimizations
○ Homo- vs. heterogeneous computing (off load to GPU certain processing)
○ Software development evolves given new hardware capabilities - this needs R&D, extensive

testing/commissioning before production rollout
● What’s the best funding model to support the new directions?

Lessons for the future

● Funding of dedicated workforce - what‘s optimal? - a good mix of the two
○ Experiment specific (a line in the funding request an important item)
○ Via CS/IT departments (long-term strategy with IT as a service - experiment specific and

general ’framework’ type support)
● Need: systemic handshake on priorities of institutional CS/IT and experiments

○ CS embedding into experiments - sync. on priorities - effectiveness
○ Long-term projection for career development - isolate career path development / uncertainty

from project engagement (long vs. short term) - retention of skilled workforce
● Enable cross-talk / cross-pollination

○ Between experiments (e.g., CHEP, ACAT not sufficient - smaller targeted workshops / travel)
○ Between theory and experiments - focus on targeted collaborations / generic frameworks
○ Enable application of new methods (ML) for exp. applications (costly detector sim., inference,

data recasting) - funding for CS research => practical domain applications

Thank you: Markus Diefenthaler, Jerome Lauret, Stefano Piano, Irakli Chakaberia

