
MUSES 
collaboration

Claudia Ratti
University of Houston

Department of Physics

T. Andrew Manning
University of Illinois Urbana-Champaign

National Center for Supercomputing Applications

SANPC 2024



Motivation

Is there a critical point on 
 the QCD phase diagram?

What are the degrees of freedom 
in the vicinity of 
the phase transition?

Where is the transition line 
at high density?

What are the phases of QCD 
at high density?

What is the nature of matter 
in the core of neutron stars?

2



What happens at large densities?

● We need to merge the lattice QCD 
equation of state with other effective 
theories

● Careful study of their respective range 
of validity

● Constrain the parameters to reproduce 
known limits

● Test different possibilities and 
validate/exclude them

3



MUSES – Modular Unified Solver of the Equation of State 

“An open-source cyberinfrastructure fostering a community-driven ecosystem that provides key 

computational tools to promote, transform and support groundbreaking research in nuclear 

physics and astrophysics, computational relativistic fluid dynamics, gravitational-wave and 

computational astrophysics.”

•Modular: while at low densities the equation of state is known from 1
st

 principles, at high μ
B

 we will implement 

different models (“modules”) that the user will be able to pick

•Unified: the different modules will be smoothly merged together to ensure maximal coverage of the phase diagram, 

while respecting established limiting cases (lattice, perturbative QCD, ChEFT…)

4



First MUSES-wide publication

Living Reviews in 
Relativity 27 (2024)

5



MUSES – Collaboration at a glance

Collaborators: - 25 at the moment of application
- 85 today!

Graduate students

Postdoctoral researchers

Research/instructional faculty

Tenured/tenure track faculty

Nuclear/heavy ion physicists

Research software engineers

Nuclear astrophysicists

Gravitational wave physicists

About 25% of collaboration is contributing towards software development 
at different levels 6



MUSES – Goals

Cyberinfrastructure of interoperating tools and services within a replicable and flexible deployment system:

● Create both new calculation modules and upgrade existing libraries to modern programming languages, improve 

algorithms, and adopt standards conducive to interoperability.

● Build web-based tools and services that provide interactive interfaces to the Calculation Engine, our job management 

system that executes processing workflows requested by researchers.

● Design a scalable, high-availability deployment system that can be reproduced in other computing environments.

7



MUSES Framework & Calculation Engine (CE)

We are defining a software framework in 

which scientists can develop and contribute 

scientific calculation modules that generate 

and transform data in composable processing 

workflows.

We are also building and hosting a scalable 

web application called the Calculation Engine 

that executes these workflows.

● Containerization
○ Modules must build and push container 

images that the CE can download and 

execute via Docker.

● Manifest
○ Each module declares input and output file 

paths, image URLs, and other information 

required by the CE in a standard format.

● API specification
○ The data structure schema for inputs and 

outputs must be declared in machine-level 

detail using the OpenAPI standard format.

8



The Calculation Engine is a software 

application that 

● manages user-submitted jobs; a job is 

the execution of one or more modules 

in a data processing workflow.

● manages the movement of data 

between subsystems

● serves data for download

● enforces access control

● organizes and stores information in a 

structured database

● tracks data provenance

What is the Calculation Engine?

System architecture schematic
9



ch
ai
n

gr
ou
p

ch
ai
n

ch
ai
n

pr
oc
es
s

Data processing workflows are 

composable structures of arbitrary 

complexity that are built from a few 

primitive component types.

Workflows

Workflow composed of hierarchically defined components

Equation of state 
generators

Derived observables

10



Deployment platforms

To facilitate rapid code interation, the “alpha release” of 
our Calculation Engine is deployed via Docker Compose 
on a single VM running on Jetstream2 at Indiana 
University, free through the NSF ACCESS program.

Once stable, we will migrate to a Kubernetes-based 
deployment on our cluster at NCSA for scalability and 
resilience. We plan to integrate additional HPC clusters 
like NCSA’s Delta as optional execution targets.

11



Build software communities

● Context
○ Short-term grants fund academic groups to develop software that functions as the scientific instrument 

to conduct their research.

● Goals
○ Reduce wasteful redundant effort and “software decay”. 

○ Produce higher quality software products for better science. 

● Strategies
○ Make software free and open source (FOSS). Use FOSS licenses. Host code publicly.

○ Build upon existing software ecosystems. Establish or use standard file formats for common data 

structures. Collaboratively develop and publish libraries that process these formats.

○ Publish packages on multiple package repos for discoverability & easy installation (e.g. PyPI, npm).

○ Write documentation targeting both “end-user” researchers as well as developers.

○ Leverage available code collaboration-ware: integrated tools for bugs/issues, wiki, CI/CD for transparent 

reproducibility.

○ Choose decentralized solutions where possible to support continuity and freedom for communities.

12



● Context
○ Short-term grants include funding for RSEs with the expertise to design, deploy, operate, and maintain 

the CI underpinning services hosted for the target research community.

● Goals
○ Reduce wasteful redundant effort related to designing a deployment system, provisioning machines, 

installing dependencies, and operating services. Use force multiplying techniques.

○ Lower barriers to migration of services and data between institutions and hosting providers. 

● Strategies
○ Follow the GitOps paradigm and Infrastructure-as-Code patterns, specifying CI declaratively and using 

industry-standard FOSS solutions to bootstrap and provision computing resources (e.g. Terraform, Helm, 

ArgoCD)

○ Design deployment systems that are reusable and composable.

○ Use FOSS solutions and platforms based on open standards throughout the stack: OpenStack, Docker, 

Kubernetes, MariaDB/PostgreSQL/Cassandra/MongoDB.

○ Choose software architectures conducive to migration: Keycloak in front of identity providers, 

S3-compatible object storage instead of filesystems

Embrace portable cyberinfrastructure (CI)

13



Long-term data storage

● Context
○ The use of advanced computing will generate increasing amounts of data products that will be 

scientifically useful beyond the scope of funded projects. Current funding models do not support 

long-term storage.

● Goals
○ Follow the FAIR principles: Findability, Accessibility, Interoperability, and Reuse

○ Maintain the availability of published data as long as possible

○ Ensure that data objects have persistent URLs that can survive beyond the funding period.

● Strategies
○ Leverage existing data repositories where feasible (Zenodo, Data Dryad, Illinois Data Bank, etc).

○ Design around economical storage options like S3-compatible object storage where possible

○ Construct “nomadic” URLs to data objects. Instead of using the domain of an institution in the funded 

phase of a project, select a domain name that can be transfered to a new custodian such that data can 

be migrated transparently to researchers.

○ Start investing in truly decentralized, peer-to-peer storage networks like IPFS.

14

https://www.go-fair.org/fair-principles/


● Context
○ Research Software Engineers (RSEs) are critical partners in advancing science that requires advanced 

computing. They are professionals with expertise beyond what a physics grad student or postdoc has 

time and motivation to acquire.

● Goals
○ Integrate RSEs into funded research projects.

○ Encourage the growth of the RSE professional field.

● Strategies
○ Identify students and postdocs who exhibit interest in Research Software Engineering and pair them 

with RSEs participating in their research projects so that they can learn about alternative career paths.

○ Include grad students and postdocs from departments like computer science outside of physics, whose 

research is aligned the project and who can focus on the software and CI development.

Workforce development

15



Connect with us!

https://musesframework.io/connect

16

https://musesframework.io/connect


Extra slides

17



MUSES – Participants

PI and co-PIs

1.Nicolas Yunes; University of Illinois at Urbana-Champaign; PI

2.Jacquelyn Noronha-Hostler; University of Illinois at Urbana-Champaign; co-PI

3.Jorge Noronha; University of Illinois at Urbana-Champaign; co-PI

4.Claudia Ratti; University of Houston; co-PI and spokesperson

5.Veronica Dexheimer; Kent State University; co-PI

Senior investigators

1.Roland Haas; National Center for Supercomputing Applications

2.Timothy Andrew Manning; National Center for Supercomputing Applications

3.Andrew Steiner; University of Tennessee, Knoxville

4.Jeremy Holt; Texas A&M University

5.Gordon Baym; University of Illinois at Urbana-Champaign

6.Mark Alford; Washington University in Saint Louis

7.Elias Most; Princeton University

Current and past postdoctoral researchers

1.Mauricio Hippert; University of Illinois at Urbana-Champaign

2. Johannes Jahan; University of Houston

3. Mateus Reinke Pelicer; Kent State University

4. Reed Essick; Perimeter Institute

5. Rajesh Kumar, KSU

6. Alex Haber, Wash U Saint Louis

7. Zidu Lin, UT Knoxville
8. Agnieszka Sorensen, University of Washington

External collaborators

1.Helvi Witek; UIUC

2.Stuart Shapiro; UIUC

3.Katerina Chatziioannou; Caltech

4.Phillip Landry; California State University Fullerton

5. Volodymyr Vovchenko, University of Houston

6.Rene Bellwied; University of Houston

7.David Curtin; University of Toronto

8.Michael Strickland; Kent State University

9.Matthew Luzum; University of Sao Paulo

10.Hajime Togashi; Kyushu University

11.Toru Kojo; Central China Normal University

12.Hannah Elfner; GSI/Goethe University Frankfurt

13. Debarati Chatterjee, IUCAA India

14. Hsin-Yu Chen, MIT

15. Tetsuo Hatsuda, RIKEN

16. Cole Miller, University of Mariland

17. Israel Portillo, University of Houston

Current and past graduate students

1. Mahmudul Hasan Anik, UT Knoxville

2. Suprovo Ghosh, IUCAA India

3. Alexander Clevinger, KSU

4. Nikolas Cruz Camacho, UIUC

5. Joaquin Grefa, University of Houston

6. Jiaxi Wu, Caltech

7. Jamie Karthein, University of Houston

8. Micheal Kahangirwe, University of Houston

9. Angel Nava, University of Houston

10. Hung Tan, UIUC

11. Pengsheng Wen, Texas A&M University

12. Ziyuan Zhang, WUSL

13. Carlos Conde, UIUC

14. Yumu Yang, UIUC

15. Jordi Salinas San Martin, UIUC

16. David Friedenberg, Texas A&M University

17. Hitansh Shah, University of Houston

18. Satyajit Roy, UT Knoxville

19. Ahmed Abuali, University of Houston

20. Prachi Garella, University of Houston

21. Musa Rahim Khan, University of Houston

https://musesframework.io/connect 18

https://musesframework.io/connect


Sustainability concerns

Challenge Potential solution / stopgap
Computing clusters cost money; the virtualized 
resources we are using for the MUSES Calculation 
Engine service that we are operating for the 
community will be destroyed when funding ends.

NSF ACCESS is an amazing new program that may 
provide sufficient resources at no cost for a relatively 
short period of time depending on the scale of usage.

Without funded personnel, software development is 
at the mercy of typically uncoordinated, independent 
groups who have very specific motivations. 

As free and open source software products, the CE 
and contributed modules should strive to foster 
user/developer communities that will extend the 
longevity of the software and ideally improve its 
utility.

Our containerized approach insulates us against a 
certain level of “bit rot” and “dependency hell”, yet all 
software must be updated and maintained over time 
due to the complex interdependencies between 
continually evolving software components, including 
the operating system and runtime environment (e.g. 
Docker). 19



Sustainability concerns

Challenge Potential solution / stopgap

Cluster nodes require continuous system administration 

to update the OS with security patches, troubleshoot 

operational issues like unresponsive machines, monitor 

data storage utilization, etc.

If there remains a hosted service, someone must respond 

to user help requests and monitor the system for fair use.

Write thorough documentation and train a dedicated 

team of graduate students & postdocs to handle routine 

maintenance and basic troubleshooting, relying on robust 

GitOps methodology to repair and restore broken 

cyberinfrastructure.

Establish a consulting relationship with a Research 

Software Engineering group who can help occasionally 

with more complex troubleshooting.

Amount of time it takes to train new students in 

programming languages and techniques required for the 

physics research can be very costly.

Leverage existing collaborations or institutions who offer 

resources like experienced mentors and tutorial/training 

sessions.

20


