

X17 discovery potential in γp→e⁺e⁻p and γD→e⁺e⁻pn with neutron tagging

Marc Vanderhaeghen

JLab PWG meeting, January 31, 2024

JGU, Mainz

X17 in ⁸Be (ATOMKI Coll.)

Invariant mass for the e⁺ - e⁻ pairs E_=18.15 MeV, M1 transition in ⁸Be =16.6 Me IPC, M1+E1 10 12 14 16 18 m_{e+e-} (MeV)

Krasznahorkay et al., PRL 116,042501 (2016)

 ${}^{8}Be(1^{+}18.2) \rightarrow {}^{8}Be(0^{+}g.s.) + X \rightarrow {}^{8}Be(0^{+}g.s.) + e^{-}e^{+}$

quantum numbers: X is either 0-, 1-, 1+ state

Several theoretical explanations:

- Feng et al. (2017) - mostly as dark photon (1-)
- light pseudoscalar (0-)

Ellwanger, Moretti (2016)

Alves, Weiner(2018)

X17 in ⁴He (ATOMKI Coll.)

Krasznahorkay et al., PRC 104,044003 (2021)

Summary of ATOMKI X17 observations

Transition		Signal	Scalar	Pseudoscalar	Vector	Axial-vector	
⁸ Be	$1^+(18.15) \to 0^+$	(M1, IS)	YES		l = 1	l = 1	l = 0, 2
⁸ Be	$1^+(17.64) \to 0^+$	(M1, IV)	NO		l = 1	l = 1	l = 0, 2
⁴ He	$0^{-}(21.01) \to 0^{+}$	(M0)	YES/NO		l = 0		l = 1
⁴ He	$0^+(20.21) \to 0^+$	(E0)	YES/NO	l = 0		l = 1	
$1^{12}C$	$1^{-}(17.23) \to 0^{+}$	(E1, IV)	YES	l = 1		l = 0, 2	l = 1

Feng, Tait, Verhaaren, PRD 102,036016(2020)

The reported 7σ anomalies reported in ⁸Be and ⁴He nuclear decays are both kinematically and dynamically consistent with the production of a 17 MeV protophobic gauge boson

bound from NA48/2: $|\varepsilon_p| < 1.2 \times 10^{-3}$

X17 in ⁸Be: VNU Experiment

VNU experiment confirms X17 observation (with 4-5 σ significance) in ⁸Be decay from 18.2 MeV state and its absence in decay of 17.6 MeV state

Ongoing nuclear physics efforts

Radiative decay counter (RDC) MEGII @PSI ⁷Li(p,X17) ⁸Be MeV Cockroft Walton Tracking DCH, LXe Taking data

NUCLEX @ LNGS ${}^{3}H(p, X17) {}^{4}He$ $I_{p} = 100 \ \mu A$ Dedicated detector Lol 2022 **COPE** @ IEAP – CTU Prague ${}^{7}Li(p, X17) {}^{8}Be$ 2.5 MeV Van de Graaff Mag. spectrometer ATOMKI \rightarrow IEAP Vertexing with Timepix 3

NewJedi @ IJCLab, GANIL, Ithemba ${}^{7}Li(p, X17) {}^{8}Be; {}^{3}H(p, X17) {}^{4}He$ Vertexing w. DSSSDs; E- plastic scints. Ongoing

N_Tof @ CERN ${}^{3}He(n, X17) {}^{4}He$ Pulsed n- beam Dedicated detector Lol 2022 Project X17 @ U. Montreal ⁷Li(p, X17) ⁸Be; ⁷Li(${}^{3}He, X17$)¹⁰B DAPHNE vertex chamber; E- plastic scints 0.95 4 π Ongoing

Ongoing efforts at accelerators

PADME@Frascati

📫 JLab

MAMI, MAGIX@MESA

X17 production in $\gamma N \rightarrow e^+e^- \ N$

Signal process: X17 production

 Background process:
 Bethe-Heitler
 + Compton: (X replaced by γ in above graph)

Background process suppressed at small -t on neutron

X17 production in $\gamma N \rightarrow e^+e^- N$

- For X17 signal process: 3 scenarios were studied, 0-, 1-, 1+ assuming a BR(X -> e^-e^+) = 1
- Coupling to nucleons:

$$\mathcal{L}_{PS} = \mathbf{0} - \mathcal{L}_{PS} = i\bar{N}\gamma_5 \left(g_{XNN}^{(0)} + g_{XNN}^{(1)}\tau_3\right) NX$$

 $\begin{array}{ll} \mathsf{J}^{\mathsf{P}}=\mathbf{1}^{\text{-}} & \mathcal{L}_{V}=-eX_{\mu}\sum_{q}\varepsilon_{q}\bar{q}\gamma^{\mu}q & \text{proton, neutron couplings:} & \varepsilon_{p}=2\varepsilon_{u}+\varepsilon_{d}\\ & \varepsilon_{n}=\varepsilon_{u}+2\varepsilon_{d} \\ \end{array} \\ \mathsf{J}^{\mathsf{P}}=\mathbf{1}^{\text{+}} & \mathcal{L}_{A}=-X_{\mu}\sum_{q}g_{q}\bar{q}\gamma^{\mu}\gamma_{5}q \end{array}$

Vdh,

Constraints on couplings from existing exclusions + ATOMKI ⁸Be

$$\begin{array}{|c|c|c|c|c|c|c|} \hline J_X^p & m_X = 17.01 \text{ MeV} & 1\sigma \text{ uncertainty in } m_X \\ \hline 0^- & |g_{XNN}^{(1)}| = (0-0.6) \times 10^{-3} \\ g_{XNN}^{(0)} = (3.0-4.0) \times 10^{-3} & g_{XNN}^{(0)} = (2.7-4.4) \times 10^{-3} \\ \hline 1^- & |\varepsilon_p| = (0-0.12) \times 10^{-2} \\ |\varepsilon_n| = (1.2-1.7) \times 10^{-2} & |\varepsilon_n| = (1.1-1.9) \times 10^{-2} \\ \hline 1^+ & a_{p,n} = (1.9-5.9) \times 10^{-5} & a_{p,n} = (1.8-6.1) \times 10^{-5} \end{array}$$

X17 production in $\gamma N \rightarrow e^+e^- N$

e+ e- γ								
$E_{\gamma} = 150 \text{ MeV}$	n							
$e^+: p = 63.2 \text{ MeV/c},$	$\theta = 100^{\circ}$							
$e^-: p = 65.5 \text{ MeV/c},$	$\theta = 85.2^{\circ}$							
n: p = 201 MeV/c,	$\theta = 39.3^{\circ}$							

QED background: BH + BornSignal curves: X17-NN couplingsrange from ATOMKI expt.Signal X17: 0-Signal X17: 1- $\delta m_{e^-e^+} = 0.2 \text{ MeV}$ Signal X17: 1+

Backens, Vdh, PRL 128,091802 (2022)

Limits on X17 to proton and neutron couplings

Vector X17

2.0 NA48/2, $\pi^0 \rightarrow \gamma(X \rightarrow e^+ e^-)$ Allowed couplings for 1- X17 state $\pi^+ \rightarrow e^+ \nu_e X$ ⁸Be 1.0 ^{12}C - Protophobic (NA48/2) $\varepsilon_p \times 10^2$ 0.0 - tension between extractions -1.0 Dark bands: 1σ limits -2.0 ⊾ -2.0 -1.0 0.0 1.0 2.0 Light bands: 2σ limits $\varepsilon_n \times 10^2$ Axial-vector X17 1.0 $^{8}\mathrm{Be}$ Allowed couplings for 1+ X17 state KTeV anomaly 0.75 $\pi^+ \rightarrow e^+ \nu_e X$ 0.5 Larger uncertainty in nuclear 0.25 $a_p imes 10^3$ axial-vector matrix element 0.0 -0.25 Barducci, Toni: JHEP02, 154 (2023) -0.5 Hostert, Pospelov: PRD108,055011 (2023) -0.75 -1.0 └ -1.0 Mommers, Vdh: arXiv:2307.02181[hep-ph] 0.25 -0.75 -0.5 -0.25 0.0 0.5 0.75 1.0 $a_n \times 10^3$

How to realise an experiment on neutron

Deuteron target and neutron tagging: γD → e⁺e⁻ np process to select process on neutron, proton has to be spectator momentum neutron >> momentum proton

Deuteron wavefunction

Machleidt, PRC 63,024001 (2001)

X17 search in $\gamma D \rightarrow e^+e^-$ np at MAGIX@MESA

X17 search in $\gamma D \rightarrow e^+e^-$ np: QED background

with **neutron tagging**: in forward neutron angular range process on neutron largerly dominates over process on proton

X17 search in $\gamma D \rightarrow e^+e^-$ np: signal vs background

J^P = 1⁻ scenario for X17

Mommers, Vdh: arXiv:2307.02181[hep-ph]

In backward kinematics for e⁻e⁺, forward angles for neutron: X17 (vector) signal on neutron is up to an order of magnitude larger than QED background for $\delta m_{e-e+} = 0.1$ MeV (for ⁸Be couplings)

X17 search in $\gamma D \rightarrow e^+e^-$ np: signal vs background

Conclusions and outlook

- ATOMKI experiments: signals seen in ⁸Be, ⁴He, and ¹²C were interpreted due to production of 17 MeV particle decaying into e⁻e⁺
- ⁸Be results: confirmed by VNU, many more experiments ongoing / planned
- Theory constraints for vector scenario:
 Tight constraints on proton: protophobic vector particle
 Tensions between constraints on neutron
- Theory allows viable parameter range for axial-vector scenario
- X17 in di-lepton production experiment on nucleon: γN → e⁺e⁻ N X17 signal / QED background up to factor 10 for neutron for e⁺e⁻ mass resolution which has already been achieved at MAMI
- → X17 production on neutron by $\gamma D \rightarrow e^+e^-$ np process with neutron tagging X17 signal / QED background found to be up to factor 10 in MAGIX@MESA kinematics (E_e = 105 MeV) for $\delta m_{e^-e^+} = 0.1$ MeV