

Searching for Exotic Polarized-Electron Polarized-Neutron Interactions in Polycrystalline Terbium Iron Garnet Using Slow Neutron Polarimetry

Krystyna Lopez

INDIANA UNIVERSITY BLOOMINGTON

20TH INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, AND POLARIMETRY

SEPT. 22-27 | JEFFERSON LAB, NEWPORT NEWS, VA

• Future Work

Outline

- Theoretical Motivation
- Why Ferrimagnets?
- TbIG@HFIR2023
- TbIG@HFIR2024

Why Exotic Force Searches?

Strong CP problem says QCD should violate CP symmetry, but highly suppressed

based on "axion", where potentials depend on spin of one or both particles

Many experiments are conducted to search for new possible interactions

measurements of atomic and molecular EDMs"^[1]

Dark matter can induce spin-dependent neutron-matter interactions ^[2]

ΠΠ

- Peccei and Quinn proposed new (broken) symmetry Moody and Wilczek proposed potentials
- "Typical approaches include torsion pendulums, torsional oscillators, atomic magnetometers, NMR, nitrogen vacancy (NV) centers in diamond, magnetic microscopes, polarized neutron experiments,

[1] K. Wei, et al. Nat. Commun. 13, 7387 (2022) [2] A. Costantino, et al. J. High Energ. Phys. 2020, 148 (2020)

Spin-Dependent Potentials

Dobrescu and Mocioiu expand:
Single particle exchange of: Spin-0 boson (m>0) Spin-1 boson (m=0) Spin-1 boson (m>0)
non-relativistic limit (v << c)
rotationally-invariant

Results in:

זה

- 16 combinations of spin/momentum
- 72 Independent couplings $f_i^{1,2}$

i = 1-16

1,2 = e, p, n, etc.

Motivation

Figure 1: Elastic scattering of two fermions mediated by some very light particles represented generically by the horizontal blob of four-momentum q.

B. Dobrescu and I. Mocioiu, J. High Energy Phys. 0611, 005 (2006)

B. Dobrescu and I. Mocioiu, J. High Energy Phys. 0611, 005 (2006)

Spin-Dependent Potentials

$$\begin{split} V_{2} &= f_{2}^{ee} \frac{\hbar c}{4\pi} (\hat{\sigma}_{1} \cdot \hat{\sigma}_{2}) \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{3} &= f_{3}^{ee} \frac{\hbar^{3}}{4\pi m_{e}^{2} c} \left[(\hat{\sigma}_{1} \cdot \hat{\sigma}_{2}) \left(\frac{1}{\lambda r^{2}} + \frac{1}{r^{3}}\right) - (\hat{\sigma}_{1} \cdot \hat{r}) (\hat{\sigma}_{2} \cdot \hat{r}) \left(\frac{1}{\lambda^{2} r} + \frac{3}{\lambda r^{2}} + \frac{3}{r^{3}}\right) \right] e^{-r/\lambda} \\ V_{11} &= -f_{11}^{ee} \frac{\hbar^{2}}{4\pi m_{e}} \left[(\hat{\sigma}_{1} \times \hat{\sigma}_{2}) \cdot \hat{r} \right] \left(\frac{1}{\lambda r} + \frac{1}{r^{2}}\right) e^{-r/\lambda} \end{split}$$

"Static" spin-spin interactions

$$\begin{split} V_{6+7} &= -f_{6+7}^{ee} \frac{\hbar^2}{4\pi m_e c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda} \\ V_8 &= f_8^{ee} \frac{\hbar}{4\pi c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \vec{v})] \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{14} &= f_{14}^{ee} \frac{\hbar}{4\pi} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \vec{v}] \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{15} &= -f_{15}^{ee} \frac{\hbar^3}{8\pi m_e^2 c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \hat{r}) + (\hat{\sigma}_1 \cdot \hat{r}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) e^{-r/\lambda} \\ V_{16} &= -f_{16}^{ee} \frac{\hbar^2}{8\pi m_e c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \vec{v}) + (\hat{\sigma}_1 \cdot \vec{v}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda} \end{split}$$

Velocity-dependent spin-spin interactions

$$\begin{split} V_{4+5} &= -Z \bigg[f_{\perp}^{ee} + f_{\perp}^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_{\perp}^{en} \bigg] \frac{\hbar^2}{8\pi m_e c} [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] \bigg(\frac{1}{\lambda r} + \frac{1}{r^2} \bigg) e^{-r/\lambda} \\ V_{9+10} &= Z \bigg[f_r^{ee} + f_r^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_r^{en} \bigg] \frac{\hbar^2}{8\pi m_e} (\hat{\sigma}_1 \cdot \hat{r}) \bigg(\frac{1}{\lambda r} + \frac{1}{r^2} \bigg) e^{-r/\lambda} \\ V_{12+13} &= Z \bigg[f_v^{ee} + f_v^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_v^{en} \bigg] \frac{\hbar}{8\pi} (\hat{\sigma}_1 \cdot \vec{v}) \bigg(\frac{1}{r} \bigg) e^{-r/\lambda} \end{split}$$

Spin-Mass Interactions

Πī

INDIANA UNIVERSITY BLOOMINGTON

Sensitive potentials to our ferrimagnetic target:

$$V_2 \propto \left(\hat{\sigma}_1 \cdot \hat{\sigma}_2\right)$$

 $V_{12+13} \propto \left(\hat{\sigma}_1 \cdot \overrightarrow{v}\right)$

✓ Well constrained by H. Yan and W. M. Snow, Phys. Rev. Lett. 110 (2013)

B. Dobrescu and I. Mocioiu, J. High Energy Phys. 0611, 005 (2006)

Spin-Dependent Potentials

$$\begin{split} V_{2} &= f_{2}^{ee} \frac{\hbar c}{4\pi} (\hat{\sigma}_{1} \cdot \hat{\sigma}_{2}) \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{3} &= f_{3}^{ee} \frac{\hbar^{3}}{4\pi m_{e}^{2} c} \left[(\hat{\sigma}_{1} \cdot \hat{\sigma}_{2}) \left(\frac{1}{\lambda r^{2}} + \frac{1}{r^{3}}\right) - (\hat{\sigma}_{1} \cdot \hat{r}) (\hat{\sigma}_{2} \cdot \hat{r}) \left(\frac{1}{\lambda^{2} r} + \frac{3}{\lambda r^{2}} + \frac{3}{r^{3}}\right) \right] e^{-r/\lambda} \\ V_{11} &= -f_{11}^{ee} \frac{\hbar^{2}}{4\pi m_{e}} \left[(\hat{\sigma}_{1} \times \hat{\sigma}_{2}) \cdot \hat{r} \right] \left(\frac{1}{\lambda r} + \frac{1}{r^{2}}\right) e^{-r/\lambda} \end{split}$$

"Static" spin-spin interactions

$$\begin{split} V_{6+7} &= -f_{6+7}^{ee} \frac{\hbar^2}{4\pi m_e c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda} \\ V_8 &= f_8^{ee} \frac{\hbar}{4\pi c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \vec{v})] \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{14} &= f_{14}^{ee} \frac{\hbar}{4\pi} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \vec{v}] \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{15} &= -f_{15}^{ee} \frac{\hbar^3}{8\pi m_e^2 c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \hat{r}) + (\hat{\sigma}_1 \cdot \hat{r}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) e^{-r/\lambda} \\ V_{16} &= -f_{16}^{ee} \frac{\hbar^2}{8\pi m_e c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \vec{v}) + (\hat{\sigma}_1 \cdot \vec{v}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda} \end{split}$$

Velocity-dependent spin-spin interactions

$$\begin{split} V_{4+5} &= -Z \bigg[f_{\perp}^{ee} + f_{\perp}^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_{\perp}^{en} \bigg] \frac{\hbar^2}{8\pi m_e c} [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] \bigg(\frac{1}{\lambda r} + \frac{1}{r^2} \bigg) e^{-r/\lambda} \\ V_{9+10} &= Z \bigg[f_r^{ee} + f_r^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_r^{en} \bigg] \frac{\hbar^2}{8\pi m_e} (\hat{\sigma}_1 \cdot \hat{r}) \bigg(\frac{1}{\lambda r} + \frac{1}{r^2} \bigg) e^{-r/\lambda} \\ V_{12+13} &= Z \bigg[f_v^{ee} + f_v^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_v^{en} \bigg] \frac{\hbar}{8\pi} (\hat{\sigma}_1 \cdot \vec{v}) \bigg(\frac{1}{r} \bigg) e^{-r/\lambda} \end{split}$$

Spin-Mass Interactions

Πī

INDIANA UNIVERSITY BLOOMINGTON

Sensitive potentials to our ferrimagnetic target:

$$V_2 \propto \left(\hat{\sigma}_1 \cdot \hat{\sigma}_2\right)$$

 $V_{12+13} \propto \left(\hat{\sigma}_1 \cdot \overrightarrow{v}\right)$

• Well constrained by H. Yan and W. M. Snow, Phys. Rev. Lett. 110 (2013)

B. Dobrescu and I. Mocioiu, J. High Energy Phys. 0611, 005 (2006)

111

Spin-Dependent Potentials

$$\begin{split} V_{2} &= f_{2}^{ee} \frac{hc}{4\pi} (\hat{\sigma}_{1} \cdot \hat{\sigma}_{2}) \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{3} &= f_{3}^{ee} \frac{\hbar^{3}}{4\pi m_{e}^{2} c} \left[(\hat{\sigma}_{1} \cdot \hat{\sigma}_{2}) \left(\frac{1}{\lambda r^{2}} + \frac{1}{r^{3}}\right) - (\hat{\sigma}_{1} \cdot \hat{r}) (\hat{\sigma}_{2} \cdot \hat{r}) \left(\frac{1}{\lambda^{2} r} + \frac{3}{\lambda r^{2}} + \frac{3}{r^{3}}\right) \right] e^{-r/\lambda} \\ V_{11} &= -f_{11}^{ee} \frac{\hbar^{2}}{4\pi m_{e}} [(\hat{\sigma}_{1} \times \hat{\sigma}_{2}) \cdot \hat{r}] \left(\frac{1}{\lambda r} + \frac{1}{r^{2}}\right) e^{-r/\lambda} \end{split}$$

"Static" spin-spin interactions

$$\begin{split} V_{6+7} &= -f_{6+7}^{ee} \frac{\hbar^2}{4\pi m_e c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda} \\ V_8 &= f_8^{ee} \frac{\hbar}{4\pi c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \vec{v})] \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{14} &= f_{14}^{ee} \frac{\hbar}{4\pi} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \vec{v}] \left(\frac{1}{r}\right) e^{-r/\lambda} \\ V_{15} &= -f_{15}^{ee} \frac{\hbar^3}{8\pi m_e^2 c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \hat{r}) + (\hat{\sigma}_1 \cdot \hat{r}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) e^{-r/\lambda} \\ V_{16} &= -f_{16}^{ee} \frac{\hbar^2}{8\pi m_e c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \vec{v}) + (\hat{\sigma}_1 \cdot \vec{v}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda} \end{split}$$

Velocity-dependent spin-spin interactions

$$\begin{split} V_{4+5} &= -Z \bigg[f_{\perp}^{ee} + f_{\perp}^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_{\perp}^{en} \bigg] \frac{\hbar^2}{8\pi m_e c} [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] \bigg(\frac{1}{\lambda r} + \frac{1}{r^2} \bigg) e^{-r/\lambda} \\ V_{9+10} &= Z \bigg[f_r^{ee} + f_r^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_r^{en} \bigg] \frac{\hbar^2}{8\pi m_e} (\hat{\sigma}_1 \cdot \hat{r}) \bigg(\frac{1}{\lambda r} + \frac{1}{r^2} \bigg) e^{-r/\lambda} \\ V_{12+13} &= Z \bigg[f_v^{ee} + f_v^{ep} + \bigg(\frac{A-Z}{Z} \bigg) f_v^{en} \bigg] \frac{\hbar}{8\pi} (\hat{\sigma}_1 \cdot \vec{v}) \bigg(\frac{1}{r} \bigg) e^{-r/\lambda} \end{split}$$

Spin-Mass Interactions

ΠΠ

INDIANA UNIVERSITY BLOOMINGTON

Sensitive potentials to our ferrimagnetic target:

$$V_2 \propto \left(\hat{\sigma}_1 \cdot \hat{\sigma}_2\right)$$

 $V_{12+13} \propto \left(\hat{\sigma}_1 \cdot \overrightarrow{v}\right)$

• Well constrained by H. Yan and W. M. Snow, Phys. Rev. Lett. 110 (2013)

Interaction results in a transverse corkscrew of the neutron spin with rotation angle ϕ

Constraint Examples

Fig. 4 | The experimental limits on f₄₊₅. The "n", "p", and "N" represent the neutron, proton, and average nucleon contribution respectively. The blue dashed line, "H.Su 2021", is from Ref. [19], the green dashed-dotted line, "Haddock 2018", is from Ref. [24], the yellow dotted line, "Piegsa 2012", is from Ref. [25], the red dashed line, "Parnell 2020", is from Ref. [50]. The black solid line and red dotted line represent our new results for "nN" and "pN" respectively.

Wei, K., Ji, W., Fu, C. et al. Constraints on exotic spin-velocitydependent interactions. *Nat Commun* **13**, 7387 (2022)

INDIANA UNIVERSITY BLOOMINGTON

ПΓ

FIG. 7. Constraints on the dimensionless coupling constants $g_A^e g_V^N$ from this work as well as previous experiments [18,56,64]. The dashed line shows the limit on the combination of g_A^e and g_V^N as explained in the main text.

Ren, X., et al. Search for an exotic parity-odd spin- and velocitydependent interaction using a magnetic force microscope. Phys. Rev. D 104, 032008 (2021)

Ferrimagnets

Anti-aligned sub-moments = net moment

Ferrimagnetic moments from different ions

INDIANA UNIVERSITY BLOOMINGTON

Ferromagnetic 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Below T _c , spins are aligned parallel in magnetic domains
Antiferromagnetic $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	Below T _N , spins are aligned antiparallel in magnetic domains
Ferrimagnetic	Below T _c , spins are aligned antiparallel but do not cancel

Libretexts (2021) 6.8: Ferro-, ferri- and Antiferromagnetism, Chemistry LibreTexts. Libretexts. Available at: https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/ Book%3A_Introduction_to_Inorganic_Chemistry_%28Wikibook%29/06%3A_Metals_and_Alloys-_Structure_Bonding_Electronic_and_Magnetic_Properties/6.08%3A_Ferro-_Ferri-_and_Antiferromagnetism

9

Orbital Compensation

Arrows are magnetic moments of each sublattice, iron in white and rare-earth in orange

Rare-earth moment responds more strongly to T near T_c

 $\mu \propto L$ and S

Πī

At T_c , μ drops to 0

TbIG

T_0 μ1 ^UTotal μ2 **U1** $T_1 < T_0$ **U**Total μ₂ $T_C < T_1$ $\mu_{Total} = 0$ μ2

Orbital Compensation

Arrows are magnetic moments of each sublattice, iron in white and rare-earth in orange

Rare-earth moment responds more strongly to T near T_c

 $\mu \propto L$ and S

ΠŢ

At T_c , μ drops to 0 but net spin non-zero due to L:

> $\mu_{\rm EQ} \propto S$ only $\mu_{\rm Tb} \propto S ~{\rm and}~L$

INDIANA UNIVERSITY BLOOMINGTON

TbIG

Rare-Earth Iron Garnets (RIG)

Ferrimagnets of the form $R_3Fe_5O_{12}$ where R is Dy, Tb, Gd, Yb, Ho, Er

Garnet refers to the crystal structure

Temperature-dependent orbital compensation of magnetism associated with spin

 T_{comp} below room temperature, but accessible with LN or ethylene glycol

INDIANA UNIVERSITY BLOOMINGTON

٦ſ

TbIG

G. Dionne, Magnetic Oxides (N.Y., Springer, 2009)

G. Dionne, Magnetic Oxides (N.Y., Springer, 2009)

INDIANA UNIVERSITY BLOOMINGTON

Πī

Why Terbium?

Easily accessible T_{comp} (~250 K) with modest cooling schemes (LN or ethylene glycol)

TbIG has low neutron absorption — this allows for a thicker target and more precision in n spin rotation measurement

Novel source of polarized electron spin

TblG Neutron Measurements Timeline

2020

Jan. 2023

IU LENS

SNS-NSE (BL-15)

TbIG

July 2023

June 2024

HFIR-MARS (CG-1D) HFIR-MARS (CG-1D)

Multimodal Advanced Radiography Station (MARS)

HFIR beamline CG-1D

ΠΠ

Radiography and computed tomography imaging capabilities

High spatial resolution radiography to quantify n-spin rotation

MARS 2023

MARS

Neutron Flight Path

INDIANA UNIVERSITY BLOOMINGTON

Ū

MARS 2023

MARS 2023

Flight Tube / Beam Monitor

Polarizer

Swiss Neutronics V-cavity supermirror polarizer

Uses magnetic layers and an externally applied B-field: neutrons are transmitted into absorbing substrate

INDIANA UNIVERSITY BLOOMINGTON

MARS 2023

Spin Transport

Guide field elements maintain polarization along n travel

> 90 Gauss at center

Spin Manipulation

Beam collimated

Neutrons pass through sample and spin rotate

Exit to V-Coil (Forte Coil)

- Diabatic transition via current sheet

Exit to longitudinal coil - Adiabatic rotation

Spin Analyzer

³He neutron spin analyzer (courtesy of Chenyang Peter Jiang)

Longitudinal polarization direction (aligned to beam momentum)

~0.84 calculated analyzer efficiency

Neutron Imaging Detector

CCD imaging detector ⁶LiF/ZnS:Cu scintillator

2048x2048 pixels, 42 μ m pixel size

Inside of Cryostat

Sample

INDIANA UNIVERSITY BLOOMINGTON

Target Region

80/20 support

Mu-metal Shielding

Neutron Spin Orientation

INDIANA UNIVERSITY BLOOMINGTON

Ш

MARS 2023

K. Lopez | PSTP 2024

24

Measurement Strategy

Asymmetry measurement: spin-up vs. spin-down via V-coil current flips

DATA SETS: 1. Ferrimagnetics checked (temp sweep through T_c)

2. Fifth-force @ T_c with 180° rotation

Ш

MARS 2023

Image of V-coil current sheet (neutron view)

Temperature Sweep Data

Pixel brightness \propto neutron count

Brighter —> spin rotated into analyzation direction

INDIANA UNIVERSITY BLOOMINGTON

MARS 2023 Results

Temperature Sweep Data

Pixel brightness \propto neutron count

Brighter —> spin rotated into analyzation direction

Equal intensity —> no difference

INDIANA UNIVERSITY BLOOMINGTON

MARS 2023 Results

Temperature Sweep Data

Pixel brightness \propto neutron count

Brighter —> spin rotated into analyzation direction

Equal intensity —> no difference

Reversal of signal through T_c

Πī

INDIANA UNIVERSITY BLOOMINGTON

MARS 2023 Results

Asymmetry value: $(-1.99 \pm 9.62) \times 10^{-5}$

Asymmetry involves both N_+ and N_- neutron spin rotation states as well as 0° and 180° target rotation states

Consistent with 0

Πī

INDIANA UNIVERSITY BLOOMINGTON

Fifth-Force Data

INDIANA UNIVERSITY BLOOMINGTON

Ū

MARS 2024

MARS 2024

Improvements

Cryostat modification

- all non-mag materials
- "coffin" sample case, better thermal contact
- improved magnetometry, thermometry
- ethylene glycol cooling -
- improvement of rotation mechanism

Second layer of mu-metal shielding - ~100x shielding factor

Upgraded imaging detector

٦ſ

- previously: CCD, ⁶LiF/ZnS:Cu scintillator, 2048x2048 with 42 μ m pixel size
- new: CMOS, GadOx scintillator, 6200x6200 with 16 μ m pixel size

INDIANA UNIVERSITY BLOOMINGTON

MARS 2024

Cryostat modification

- all non-mag materials
- "coffin" sample case, better thermal contact
- improved magnetometry, thermometry
- ethylene glycol cooling —
- improvement of rotation mechanism

Second layer of mu-metal shielding ~100x shielding factor -

Upgraded imaging detector

ΠΠ

- previously: CCD, ⁶LiF/ZnS:Cu scintillator, 2048x2048 with 42 μ m pixel size
- new: CMOS, GadOx scintillator, 6200x6200 with 16 μ m pixel size

INDIANA UNIVERSITY BLOOMINGTON

MARS 2024

Improvements

Improvements

Cryostat modification

- all non-mag materials
- "coffin" sample case, better thermal contact
- improved magnetometry, thermometry
- ethylene glycol cooling -
- improvement of rotation mechanism

Second layer of mu-metal shielding ~100x shielding factor

Upgraded imaging detector

٦ſ

- previously: CCD, ⁶LiF/ZnS:Cu scintillator, 2048x2048 with 42 μ m pixel size
- new: CMOS, GadOx scintillator, 6200x6200 with 16 μ m pixel size

INDIANA UNIVERSITY BLOOMINGTON

MARS 2024

Improvements

Cryostat modification

- all non-mag materials
- "coffin" sample case, better thermal contact
- improved magnetometry, thermometry
- ethylene glycol cooling -
- improvement of rotation mechanism

Second layer of mu-metal shielding - ~100x shielding factor

Upgraded imaging detector

- previously: CCD, ⁶LiF/ZnS:Cu scintillator, 2048x2048 with 42 μ m pixel size
- new: CMOS, GadOx scintillator, 6200x6200 with 16 μ m pixel size

INDIANA UNIVERSITY BLOOMINGTON

MARS 2024

2023

2024

Developments and Future Work

Pre-print on ArXiV, to be submitted very soon to JMMM

Polarized Neutron Measurements of the Internal Magnetization of a Ferrimagnet Across its Compensation Temperature

C. D. Hughes,¹ K. N. Lopez,¹ T. Mulkey,² J. C. Long,³ M. Sarsour,² M. Van Meter,¹ S. Samiei,¹ D. V. Baxter,⁴ W. M. Snow,¹ L. M. Lommel,⁵ Y. Zhang,⁶ P. Jiang,⁶ E. Stringfellow,⁶ P. Zolnierczuk,⁶ M. Frost,⁶ and M. Odom⁶

¹Indiana University/Center for Exploration of Energy and Matter and Indiana University Center for Spacetime Symmetries, 2401 Milo B. Sampson Lane, Bloomington, IN 47408, USA

²Georgia State University, Atlanta, GA 30303, USA

³University of Illinois, Urbana, IL 61801-3003, USA

⁴Indiana University/Center for Exploration of Energy and Matter,

2401 Milo B. Sampson Lane, Bloomington, IN 47408, USA

⁵University of Notre Dame, Holy Cross Dr, Notre Dame, IN 46556, USA

⁶Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

(Dated: August 28, 2024)

We present the first polarized neutron transmission image of a model Neél ferrimagnetic material, polycrystalline terbium iron garnet ($Tb_3Fe_5O_{12}$, TbIG for short), as it is taken through its compensation temperature T_{comp} where, according to the theory of ferrimagnetism, the internal magnetization should vanish. Our polarized neutron imaging data and the additional supporting measurements using neutron spin echo spectroscopy and SQUID magnetometry are all consistent with a vanishing internal magnetization at T_{comp} .

arXiv:2408.14794v1

ΠΠ

INDIANA UNIVERSITY BLOOMINGTON

Future papers:

- 2024 exotic force constraints
- internal magnetic domain search -

MARS 2025A: proposal submitted for transverse electron polarization measurement

SPring-8: Magnetic Compton scattering for absolute electron spin measurement

Development of single-crystal sample

(Shameless Plug of) APS DNP 2024 Ferrimagnets Talks

Katherine Li

Session K10: Fundamental Neutron Physics II 10:30 AM-12:30 PM, Wednesday, October 9, 2024 Hilton Boston Park Plaza Room: Studio 1, Lobby Level

Chair: Jason Fry, Eastern Kentucky University

Abstract: K10.00002 : Slow Neutron Polarimetry for a Spin-Dependent Fifth Force Search in Terbium Iron Garnet: Overview and Neutron Imaging Analysis* 10:42 AM-10:54 AM

Thomas Mulkey

Session K10: Fundamental Neutron Physics II 10:30 AM-12:30 PM, Wednesday, October 9, 2024 Hilton Boston Park Plaza Room: Studio 1, Lobby Level

Chair: Jason Fry, Eastern Kentucky University

Abstract: K10.00003 : Slow Neutron Polarimetry for a Spin-Dependent Fifth Force Search in Terbium Iro **Garnet: Advanced Data Analysis Techniques*** 10:54 AM-11:06 AM

Krystyna Lopez

Session F10: Fundamental Symmetries II: Beta Decay

2:00 PM-3:36 PM, Tuesday, October 8, 2024 Hilton Boston Park Plaza Room: Studio 1, Lobby Level

Chair: Christopher Morris, Los Alamos National Laboratory

Abstract: F10.00008 : Exploring Exotic Spin-Dependent Interactions via Light Boson Exchange: Theoretical Frameworks and Experimental Techniques in Ferrimagnetic Terbium Iron Garnet* 3:24 PM-3:36 PM

INDIANA UNIVERSITY BLOOMINGTON

Future Work

Becket Hill

	Session J11: Instrumentation III 8:30 AM–9:54 AM, Wednesday, October 9, 2024 Hilton Boston Park Plaza Room: Arlington, Mezzanine Level
	Chair: Kay Kolos, Lawrence Livermore National Laboratory
	Abstract: J11.00003 : Synthesis and Characterization of Terbium Iron Garnet for the NSR-Ferrimagnets Experiment* 8:54 AM-9:06 AM
	Michael Van Meter
	Session K13: Mini-Symposium: Next Gen Techniques in Fundamental Symmetries and Neutrinos II 10:30 AM–12:06 PM, Wednesday, October 9, 2024 Hilton Boston Park Plaza Room: Statler, Mezzanine Level
	Chair: Ronald Fernando Garcia Ruiz, MIT Laboratory for Nuclear Science
on	Abstract: K13.00003 : Neutron Polarimetric Imaging in Searches for Exotic Spin-Dependent Neutron Interactions with Matter* 10:54 AM-11:06 AM

PSTP⁷² 20TH INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, **AND POLARIMETRY**

SEPT. 22-27 | JEFFERSON LAB, NEWPORT NEWS, VA

Thank you!

Indiana University/CEEM: David Baxter, Caleb Hughes, Katherine Li, Krystyna Lopez, Sepehr Samiei, W. Michael Snow, Michael Van Meter

University of Illinois-Urbana Champaign: Becket Hill, Josh Long

<u>Georgia State University</u>: Thomas Mulkey, Rashmi Parajuli, Murad Sarsour

<u>ORNL-SNS</u>: Matthew Frost, Mary Odom, Piotr Zolnierczuk ORNL-HFIR: Roger Hobbs, Chenyang Peter Jiang, Erik Stringfellow, James Torres, Yuxuan Zhang

INDIANA UNIVERSITY BLOOMINGTON

This work is supported by:

NSF Grants: PHY-1707986 PHY-2209481

DOE Grant: DE-SC0010443

GEM Fellowship

INSGC Fellowship

Neutron Spin Rotation—Ferrimagnets Collaboration

Backup Slides

<u>Co-precipitation method</u> Combine $RE(NO_3)_3$, $FeCI_3$ and form precipitate with NaOH

Synthesis

Slide Courtesy of Caleb Hughes

<u>Co-precipitation method</u> Combine $RE(NO_3)_3$, $FeCI_3$ and form precipitate with NaOH

Wash to neutral, then boil

INDIANA UNIVERSITY BLOOMINGTON

Synthesis

Slide Courtesy of Caleb Hughes

Co-precipitation method Combine $RE(NO_3)_3$, $FeCI_3$ and form precipitate with NaOH

Wash to neutral, then boil

Dry for 12 hours in furnace

Synthesis

Slide Courtesy of Caleb Hughes

<u>Co-precipitation method</u> Combine $RE(NO_3)_3$, $FeCI_3$ and form precipitate with NaOH

Wash to neutral, then boil

Dry for 12 hours in furnace

Crush into powder

INDIANA UNIVERSITY BLOOMINGTON

Synthesis

Slide Courtesy of Caleb Hughes

<u>Co-precipitation method</u> Combine $RE(NO_3)_3$, $FeCI_3$ and form precipitate with NaOH

Wash to neutral, then boil

- Dry for 12 hours in furnace
- Crush into powder
- Press into pellets

ΠΠ

Synthesis

Slide Courtesy of Caleb Hughes

