

Searching for Exotic Polarized-Electron Polarized-Neutron Interactions in Polycrystalline Terbium Iron Garnet Using Slow Neutron Polarimetry

PSTP

20TH INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, **AND POLARIMETRY**

SEPT. 22-27 | JEFFERSON LAB, NEWPORT NEWS, VA

Krystyna Lopez

Outline

- Theoretical Motivation
- Why Ferrimagnets?
- TbIG@HFIR2023
- TbIG@HFIR2024
	-

• Future Work

īГ

Why Exotic Force Searches?

Strong CP problem says QCD should violate CP symmetry, but highly suppressed

based on "axion", where potentials depend on spin of one or both particles

Many experiments are conducted to search for new possible interactions

-
- Peccei and Quinn proposed new (broken) symmetry Moody and Wilczek proposed potentials
	-
- "Typical approaches include torsion pendulums, torsional oscillators, atomic magnetometers, NMR, nitrogen vacancy (NV) centers in diamond, magnetic microscopes, **polarized neutron experiments**,
	-

measurements of atomic and molecular EDMs" [1]

Dark matter can induce spin-dependent neutron-matter interactions ^[2]

[1] K. Wei, *et al.* Nat. Commun. **13**, 7387 (2022) [2] A. Costantino, *et al*. J. High Energ. Phys*.* **2020**, 148 (2020) Dobrescu and Mocioiu expand: **• Single particle exchange of:** Spin-0 boson (m>0) Spin-1 boson (m=0) Spin-1 boson (m>0) • non-relativistic limit (v << c) **• rotationally-invariant**

- 16 combinations of spin/momentum
- 72 Independent couplings 1,2

 $i = 1 - 16$

 $1,2 = e, p, n, etc.$

Results in:

īГ

Spin-Dependent Potentials

B. Dobrescu and I. Mocioiu, J. High Energy Phys. 0611, 005 (2006)

Motivation

Figure 1: Elastic scattering of two fermions mediated by some very light particles represented generically by the horizontal blob of four-momentum q .

⁴ K. Lopez | PSTP 2024

Spin-Mass Interactions

īГ

"Static" spin-spin interactions

$$
V_{6+7} = -f_{6+7}^{ee} \frac{\hbar^2}{4\pi m_e c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

\n
$$
V_8 = f_8^{ee} \frac{\hbar}{4\pi c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \vec{v})] \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_{14} = f_{14}^{ee} \frac{\hbar}{4\pi} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \vec{v}] \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_{15} = -f_{15}^{ee} \frac{\hbar^3}{8\pi m_e^2 c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \hat{r}) + (\hat{\sigma}_1 \cdot \hat{r}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) e^{-r/\lambda}
$$

\n
$$
V_{16} = -f_{16}^{ee} \frac{\hbar^2}{8\pi m_e c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \vec{v}) + (\hat{\sigma}_1 \cdot \vec{v}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

Velocity-dependent spin-spin interactions

$$
V_{4+5} = -Z \left[f_{\perp}^{ee} + f_{\perp}^{ep} + \left(\frac{A-Z}{Z} \right) f_{\perp}^{en} \right] \frac{\hbar^2}{8\pi m_e c} [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}
$$

\n
$$
V_{9+10} = Z \left[f_r^{ee} + f_r^{ep} + \left(\frac{A-Z}{Z} \right) f_r^{en} \right] \frac{\hbar^2}{8\pi m_e} (\hat{\sigma}_1 \cdot \hat{r}) \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}
$$

\n
$$
V_{12+13} = Z \left[f_r^{ee} + f_r^{ep} + \left(\frac{A-Z}{Z} \right) f_r^{en} \right] \frac{\hbar}{8\pi} (\hat{\sigma}_1 \cdot \vec{v}) \left(\frac{1}{r} \right) e^{-r/\lambda}
$$

B. Dobrescu and I. Mocioiu, J. High Energy Phys. 0611, 005 (2006)

Spin-Dependent Potentials Motivation

$$
V_2 = f_2^{ee} \frac{\hbar c}{4\pi} (\hat{\sigma}_1 \cdot \hat{\sigma}_2) \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_3 = f_3^{ee} \frac{\hbar^3}{4\pi m_e^2 c} \left[(\hat{\sigma}_1 \cdot \hat{\sigma}_2) \left(\frac{1}{\lambda r^2} + \frac{1}{r^3}\right) - (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) \right] e^{-r/\lambda}
$$

\n
$$
V_{11} = -f_{11}^{ee} \frac{\hbar^2}{4\pi m_e} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \hat{r}] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

Sensitive potentials to our ferrimagnetic target:

✓ Well constrained by H. Yan and W. M. Snow, Phys. Rev. Lett. **110** (2013)

$$
V_2 \propto (\hat{\sigma}_1 \cdot \hat{\sigma}_2)
$$

 $V_{12+13} \propto (\hat{\sigma}_1 \cdot \vec{v})$

Spin-Mass Interactions

īГ

"Static" spin-spin interactions

$$
V_{6+7} = -f_{6+7}^{ee} \frac{\hbar^2}{4\pi m_e c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

\n
$$
V_8 = f_8^{ee} \frac{\hbar}{4\pi c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \vec{v})] \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_{14} = f_{14}^{ee} \frac{\hbar}{4\pi} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \vec{v}] \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_{15} = -f_{15}^{ee} \frac{\hbar^3}{8\pi m_e^2 c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \hat{r}) + (\hat{\sigma}_1 \cdot \hat{r}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) e^{-r/\lambda}
$$

\n
$$
V_{16} = -f_{16}^{ee} \frac{\hbar^2}{8\pi m_e c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \vec{v}) + (\hat{\sigma}_1 \cdot \vec{v}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

Velocity-dependent spin-spin interactions

$$
V_{4+5} = -Z \left[f_{\perp}^{ee} + f_{\perp}^{ep} + \left(\frac{A-Z}{Z} \right) f_{\perp}^{en} \right] \frac{\hbar^2}{8\pi m_e c} [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}
$$

\n
$$
V_{9+10} = Z \left[f_r^{ee} + f_r^{ep} + \left(\frac{A-Z}{Z} \right) f_r^{en} \right] \frac{\hbar^2}{8\pi m_e} (\hat{\sigma}_1 \cdot \hat{r}) \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}
$$

\n
$$
V_{12+13} = Z \left[f_v^{ee} + f_v^{ep} + \left(\frac{A-Z}{Z} \right) f_v^{en} \right] \frac{\hbar}{8\pi} (\hat{\sigma}_1 \cdot \vec{v}) \left(\frac{1}{r} \right) e^{-r/\lambda}
$$

B. Dobrescu and I. Mocioiu, J. High Energy Phys. 0611, 005 (2006)

 $\sqrt{4}$

Spin-Dependent Potentials Motivation

$$
V_2 = f_2^{ee} \frac{hc}{4\pi} (\hat{\sigma}_1 \cdot \hat{\sigma}_2) \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_3 = f_3^{ee} \frac{\hbar^3}{4\pi m_e^2 c} \left[(\hat{\sigma}_1 \cdot \hat{\sigma}_2) \left(\frac{1}{\lambda r^2} + \frac{1}{r^3}\right) - (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) \right] e^{-r/\lambda}
$$

\n
$$
V_{11} = -f_{11}^{ee} \frac{\hbar^2}{4\pi m_e} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \hat{r}] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

Sensitive potentials to our ferrimagnetic target:

• Well constrained by H. Yan and W. M. Snow, Phys. Rev. Lett. **110** (2013)

$$
V_2 \propto (\hat{\sigma}_1 \cdot \hat{\sigma}_2)
$$

 $V_{12+13} \propto (\hat{\sigma}_1 \cdot \vec{v})$

Spin-Mass Interactions

TÌТ

"Static" spin-spin interactions

$$
V_{6+7} = -f_{6+7}^{ee} \frac{\hbar^2}{4\pi m_e c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

\n
$$
V_8 = f_8^{ee} \frac{\hbar}{4\pi c} [(\hat{\sigma}_1 \cdot \vec{v})(\hat{\sigma}_2 \cdot \vec{v})] \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_{14} = f_{14}^{ee} \frac{\hbar}{4\pi} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \vec{v}] \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_{15} = -f_{15}^{ee} \frac{\hbar^3}{8\pi m_e^2 c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \hat{r}) + (\hat{\sigma}_1 \cdot \hat{r}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) e^{-r/\lambda}
$$

\n
$$
V_{16} = -f_{16}^{ee} \frac{\hbar^2}{8\pi m_e c^2} \{ [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] (\hat{\sigma}_2 \cdot \vec{v}) + (\hat{\sigma}_1 \cdot \vec{v}) [\hat{\sigma}_2 \cdot (\vec{v} \times \hat{r})] \} \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

Velocity-dependent spin-spin interactions

$$
V_{4+5} = -Z \left[f_{\perp}^{ee} + f_{\perp}^{ep} + \left(\frac{A-Z}{Z} \right) f_{\perp}^{en} \right] \frac{\hbar^2}{8\pi m_e c} [\hat{\sigma}_1 \cdot (\vec{v} \times \hat{r})] \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}
$$

\n
$$
V_{9+10} = Z \left[f_r^{ee} + f_r^{ep} + \left(\frac{A-Z}{Z} \right) f_r^{en} \right] \frac{\hbar^2}{8\pi m_e} (\hat{\sigma}_1 \cdot \hat{r}) \left(\frac{1}{\lambda r} + \frac{1}{r^2} \right) e^{-r/\lambda}
$$

\n
$$
V_{12+13} = Z \left[f_v^{ee} + f_v^{ep} + \left(\frac{A-Z}{Z} \right) f_v^{en} \right] \frac{\hbar}{8\pi} (\hat{\sigma}_1 \cdot \vec{v}) \left(\frac{1}{r} \right) e^{-r/\lambda}
$$

B. Dobrescu and I. Mocioiu, J. High Energy Phys. 0611, 005 (2006)

Spin-Dependent Potentials Motivation

$$
V_2 = f_2^{ee} \frac{hc}{4\pi} (\hat{\sigma}_1 \cdot \hat{\sigma}_2) \left(\frac{1}{r}\right) e^{-r/\lambda}
$$

\n
$$
V_3 = f_3^{ee} \frac{\hbar^3}{4\pi m_e^2 c} \left[(\hat{\sigma}_1 \cdot \hat{\sigma}_2) \left(\frac{1}{\lambda r^2} + \frac{1}{r^3}\right) - (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3}\right) \right] e^{-r/\lambda}
$$

\n
$$
V_{11} = -f_{11}^{ee} \frac{\hbar^2}{4\pi m_e} [(\hat{\sigma}_1 \times \hat{\sigma}_2) \cdot \hat{r}] \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}
$$

$$
V_2 \propto (\hat{\sigma}_1 \cdot \hat{\sigma}_2)
$$

$$
{2})\qquad V{12+13}\propto \left(\hat{\sigma}_{1}\cdot \overrightarrow{v}\right)
$$

Sensitive potentials to our ferrimagnetic target:

• Well constrained by H. Yan and W. M. Snow, Phys. Rev. Lett. **110** (2013)

Interaction results in a transverse corkscrew of the neutron spin with rotation angle *ϕ*

īГ

Constraint Examples

Fig. 4 | The experimental limits on f_{4+5} . The "n", "p", and "N" represent the neutron, proton, and average nucleon contribution respectively. The blue dashed line, "H.Su 2021", is from Ref. [19], the green dashed-dotted line, "Haddock 2018", is from Ref. [24], the yellow dotted line, "Piegsa 2012", is from Ref. [25], the red dashed line, "Parnell 2020", is from Ref. [50]. The black solid line and red dotted line represent our new results for "nN" and "pN" respectively.

FIG. 7. Constraints on the dimensionless coupling constants $g_A^e g_V^N$ from this work as well as previous experiments [18,56,64]. The dashed line shows the limit on the combination of g_A^e and g_V^N as explained in the main text.

Wei, K., Ji, W., Fu, C. *et al.* Constraints on exotic spin-velocitydependent interactions. *Nat Commun* **13**, 7387 (2022)

Ren, X., *et al*. Search for an exotic parity-odd spin- and velocitydependent interaction using a magnetic force microscope. Phys. Rev. D **104**, 032008 (2021)

Ferrimagnets

Anti-aligned sub-moments = net moment

Ferrimagnetic moments from different ions

Libretexts (2021) *6.8: Ferro-, ferri- and Antiferromagnetism*, *Chemistry LibreTexts*. Libretexts. Available at: https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/ Book%3A_Introduction_to_Inorganic_Chemistry_%28Wikibook%29/06%3A_Metals_and_Alloys- _Structure_Bonding_Electronic_and_Magnetic_Properties/6.08%3A_Ferro-_Ferri-_and_Antiferromagnetism

Rare-earth moment responds more strongly to T near T_c

 $\mu \propto L$ and S

īГ

At T_c , μ drops to 0

Arrows are magnetic moments of each sublattice, iron in white and rare-earth in orange

K. Lopez | PSTP 2024

TbIG

Orbital Compensation

Rare-earth moment responds more strongly to T near T_c

 $\mu \propto L$ and S

Ŵ

At T_c , μ drops to 0 <u>but</u> net spin non-zero *τ* due to L :

 $\mu_{\sf Fe} \propto S$ only $\mu_{\sf Tb} \propto S$ and L

Arrows are magnetic moments of each sublattice, iron in white and rare-earth in orange

īГ

Temperature-dependent orbital compensation of magnetism associated with spin

Garnet refers to the crystal structure

 T_{comp} below room temperature, but accessible with LN or ethylene glycol

Ferrimagnets of the form $R_3Fe_5O_{12}$ where is Dy, **Tb**, Gd, Yb, Ho, Er *R*

G. Dionne, *Magnetic Oxides* (N.Y., Springer, 2009)

Rare-Earth Iron Garnets (*R*IG)

TbIG

īГ

Why Terbium?

Easily accessible T_{comp} (~250 K) with modest cooling schemes (LN or ethylene glycol)

TbIG has low neutron absorption — this allows for a thicker target and more precision in n spin rotation measurement

Novel source of polarized electron spin

G. Dionne, *Magnetic Oxides* (N.Y., Springer, 2009)

TbIG Neutron Measurements Timeline

TbIG

Jan. 2023 July 2023 June 2024

IU LENS SNS-NSE (BL-15) HFIR-MARS (CG-1D) HFIR-MARS (CG-1D)

2020

MARS

Multimodal Advanced Radiography Station (MARS)

HFIR beamline CG-1D

ŪĪ

Radiography and computed tomography imaging capabilities

High spatial resolution radiography to quantify n-spin rotation

K. Lopez | PSTP 2024

Ŵ

Neutron Flight Path

Flight Tube / Beam Monitor

K. Lopez | PSTP 2024

Swiss Neutronics V-cavity supermirror polarizer

Uses magnetic layers and an externally applied B-field: —> spin-aligned neutrons are reflected while spin anti-aligned neutrons are transmitted into absorbing substrate

Polarizer

Spin Transport

Guide field elements maintain polarization along n travel

> 90 Gauss at center

Spin Manipulation

Beam collimated

Neutrons pass through sample and spin rotate

Exit to V-Coil (Forte Coil)

- Diabatic transition via current sheet

Exit to longitudinal coil - Adiabatic rotation

Spin Analyzer

3He neutron spin analyzer (courtesy of Chenyang Peter Jiang)

Longitudinal polarization direction (aligned to beam momentum)

~0.84 calculated analyzer efficiency

Neutron Imaging Detector

CCD imaging detector 6LiF/ZnS:Cu scintillator

2048x2048 pixels, 42 *μ*m pixel size

Sample Inside of Cryostat Cryostat 80/20 support Mu-metal Shielding

INDIANA UNIVERSITY BLOOMINGTON

Target Region

K. Lopez | PSTP 2024

Ŵ

24

Neutron Spin Orientation

K. Lopez | PSTP 2024

Ú

Measurement Strategy

MARS 2023

Asymmetry measurement: spin-up vs. spin-down via V-coil current flips

DATA SETS: 1. Ferrimagnetics checked (temp sweep through T_c)

2. Fifth-force $@T_c$ with 180° rotation

Image of V-coil current sheet (neutron view)

Temperature Sweep Data

Pixel brightness x neutron count

MARS 2023 Results

Brighter —> spin rotated into analyzation direction

MARS 2023 Results

Brighter —> spin rotated into analyzation direction

Equal intensity —> no difference

Temperature Sweep Data

Pixel brightness x neutron count

²⁸ K. Lopez | PSTP 2024

MARS 2023 Results

Brighter —> spin rotated into analyzation direction

Equal intensity —> no difference

Reversal of signal through *Tc*

īГ

Temperature Sweep Data

Pixel brightness x neutron count

Fifth-Force Data

Asymmetry value: $(-1.99 \pm 9.62) \times 10^{-5}$

K. Lopez | PSTP 2024

Asymmetry involves both N_+ and N_- neutron spin rotation states as well as 0° and 180° target rotation states

Consistent with 0

īГ

Ù

MARS 2024

- all non-mag materials
- "coffin" sample case, better thermal contact
- improved magnetometry, thermometry
- ethylene glycol cooling
- improvement of rotation mechanism

Cryostat modification

Second layer of mu-metal shielding - ~100x shielding factor

- previously: CCD, 6LiF/ZnS:Cu scintillator, 2048x2048 with 42 μm pixel size
- new: CMOS, GadOx scintillator, 6200x6200 with 16 μm pixel size

Upgraded imaging detector

ТÌТ

Improvements

- all non-mag materials
- "coffin" sample case, better thermal contact
- improved magnetometry, thermometry
- ethylene glycol cooling
- improvement of rotation mechanism

Cryostat modification

Second layer of mu-metal shielding - ~100x shielding factor

- previously: CCD, 6LiF/ZnS:Cu scintillator, 2048x2048 with 42 μm pixel size
- new: CMOS, GadOx scintillator, 6200x6200 with 16 μm pixel size

Upgraded imaging detector

īГ

MARS 2024

Improvements

- all non-mag materials
- "coffin" sample case, better thermal contact
- improved magnetometry, thermometry
- ethylene glycol cooling
- improvement of rotation mechanism

MARS 2024

Cryostat modification

Second layer of mu-metal shielding ~100x shielding factor

- previously: CCD, 6LiF/ZnS:Cu scintillator, 2048x2048 with 42 μm pixel size
- new: CMOS, GadOx scintillator, 6200x6200 with 16 μm pixel size

Upgraded imaging detector

īГ

Improvements

- all non-mag materials
- "coffin" sample case, better thermal contact
- improved magnetometry, thermometry
- ethylene glycol cooling
- improvement of rotation mechanism

MARS 2024

Improvements

Cryostat modification

Second layer of mu-metal shielding - ~100x shielding factor

Upgraded imaging detector previously: CCD, ⁶LiF/ZnS:Cu scintillator,

- 2048x2048 with 42 μm pixel size new: CMOS, GadOx scintillator,
- 6200x6200 with 16 μm pixel size

2023 2024

arXiv:2408.14794v1

īГ

Future papers:

- 2024 exotic force constraints
- internal magnetic domain search

MARS 2025A: proposal submitted for transverse electron polarization measurement

SPring-8: Magnetic Compton scattering for absolute electron spin measurement

Development of single-crystal sample

Pre-print on ArXiV, to be submitted very soon to JMMM

Polarized Neutron Measurements of the Internal Magnetization of a Ferrimagnet **Across its Compensation Temperature**

C. D. Hughes,¹ K. N. Lopez,¹ T. Mulkey,² J. C. Long,³ M. Sarsour,² M. Van Meter,¹ S. Samiei,¹ D. V. Baxter,⁴ W. M. Snow,¹ L. M. Lommel,⁵ Y. Zhang,⁶ P. Jiang,⁶ E. Stringfellow,⁶ P. Zolnierczuk,⁶ M. Frost,⁶ and M. Odom⁶

 $^{-1}$ Indiana University/Center for Exploration of Energy and Matter and Indiana University Center for Spacetime Symmetries, 2401 Milo B. Sampson Lane, Bloomington, IN 47408, USA

² Georgia State University, Atlanta, GA 30303, USA

 3 University of Illinois, Urbana, IL 61801-3003, USA

 $⁴ Indiana University/Center for Exploration of Energy and Matter,$ </sup>

2401 Milo B. Sampson Lane, Bloomington, IN 47408, USA

⁵ University of Notre Dame, Holy Cross Dr, Notre Dame, IN 46556, USA

 6 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

(Dated: August 28, 2024)

We present the first polarized neutron transmission image of a model Neél ferrimagnetic material, polycrystalline terbium iron garnet (Tb₃Fe₅O₁₂, TbIG for short), as it is taken through its compensation temperature T_{comp} where, according to the theory of ferrimagnetism, the internal magnetization should vanish. Our polarized neutron imaging data and the additional supporting measurements using neutron spin echo spectroscopy and SQUID magnetometry are all consistent with a vanishing internal magnetization at $T_{comp.}$

Developments and Future Work

(Shameless Plug of) APS DNP 2024 Ferrimagnets Talks

Katherine Li **Becket Hill**

Session K10: Fundamental Neutron Physics II 10:30 AM-12:30 PM, Wednesday, October 9, 2024 Hilton Boston Park Plaza Room: Studio 1, Lobby Level

Chair: Jason Fry, Eastern Kentucky University

Abstract: K10.00002 : Slow Neutron Polarimetry for a Spin-Dependent Fifth Force Search in Terbium Iron **Garnet: Overview and Neutron Imaging Analysis*** 10:42 AM-10:54 AM

Thomas Mulkey

Session K10: Fundamental Neutron Physics II 10:30 AM-12:30 PM, Wednesday, October 9, 2024 Hilton Boston Park Plaza Room: Studio 1, Lobby Level

Chair: Jason Fry, Eastern Kentucky University

Abstract: K10.00003 : Slow Neutron Polarimetry for a Spin-Dependent Fifth Force Search in Terbium Iro **Garnet: Advanced Data Analysis Techniques*** 10:54 AM-11:06 AM

Krystyna Lopez

Session F10: Fundamental Symmetries II: Beta Decay

2:00 PM-3:36 PM, Tuesday, October 8, 2024 Hilton Boston Park Plaza Room: Studio 1, Lobby Level

Chair: Christopher Morris, Los Alamos National Laboratory

Abstract: F10.00008 : Exploring Exotic Spin-Dependent Interactions via Light Boson Exchange: Theoretical Frameworks and Experimental Techniques in Ferrimagnetic Terbium Iron Garnet* 3:24 PM-3:36 PM

Future Work

PSTP 20TH INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, **AND POLARIMETRY**

SEPT. 22-27 | JEFFERSON LAB, NEWPORT NEWS, VA

Thank you! Insectellowship

INDIANA UNIVERSITY BLOOMINGTON

Indiana University/CEEM: David Baxter, Caleb Hughes, Katherine Li, Krystyna Lopez, Sepehr Samiei, W. Michael Snow, Michael Van Meter

University of Illinois-Urbana Champaign: Becket Hill, Josh Long

Georgia State University: Thomas Mulkey, Rashmi Parajuli, Murad Sarsour

DOE Grant: DE-SC0010443

ORNL-SNS: Matthew Frost, Mary Odom, Piotr Zolnierczuk ORNL-HFIR: Roger Hobbs, Chenyang Peter Jiang, Erik Stringfellow, James Torres, Yuxuan Zhang

Neutron Spin Rotation—Ferrimagnets Collaboration

This work is supported by:

NSF Grants: PHY-1707986 PHY-2209481

GEM Fellowship

K. Lopez | PSTP 2024

Backup Slides

Slide Courtesy of Caleb Hughes K. Lopez | PSTP 2024

Co-precipitation method Combine $RE(NO₃)₃$, FeCl₃ and form precipitate with *NaOH*

Slide Courtesy of Caleb Hughes K. Lopez | PSTP 2024

Co-precipitation method Combine $\overline{RE(NO_3)_3}$, FeCl₃ and form precipitate with *NaOH*

Wash to neutral, then boil

Slide Courtesy of Caleb Hughes K. Lopez | PSTP 2024

Co-precipitation method Combine $RE(NO₃)₃$, FeCl₃ and form precipitate with *NaOH*

Wash to neutral, then boil

Dry for 12 hours in furnace

Slide Courtesy of Caleb Hughes K. Lopez | PSTP 2024

Co-precipitation method Combine $\overline{RE(NO_3)_3}$, $\overline{FeCl_3}$ and form precipitate with *NaOH*

Wash to neutral, then boil

Dry for 12 hours in furnace

Crush into powder

Slide Courtesy of Caleb Hughes K. Lopez | PSTP 2024

Co-precipitation method Combine $\overline{RE(NO_3)_3}$, FeCl₃ and form precipitate with *NaOH*

Wash to neutral, then boil

- Dry for 12 hours in furnace
- Crush into powder
- Press into pellets